1
|
Cheng WF, Gao SZ, Yang YC, Wang L. Copper Catalyzed [3+2] Annulation Reaction of Exocyclic Sulfonyl Enamides for the Synthesis of N,O-Spiroketal and Spiroketal. Chemistry 2024; 30:e202401062. [PMID: 38821866 DOI: 10.1002/chem.202401062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
A copper-catalyzed [3+2] annulation reaction of exocyclic enamines/enol ethers with 1,4-benzoquinone esters has been developed, providing facile access to N,O-spiroketals and spiroketals under mild conditions with broad substrate scope (26 examples, 71-94 % yields). Gram scale synthesis and chemical transformations demonstrated that this method is potentially useful in the synthesis of natural products and drugs containing a N,O- spiroketal moiety. The chiral N,O-spiroketal could be obtained with 98 % ee after recrystallization, when a chiral SaBOX ligand was employed.
Collapse
Affiliation(s)
- Wen-Fu Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Shan-Zeng Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yu-Chen Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, 3663 North Zhongshan Road, Shanghai, 200062, China, China
| |
Collapse
|
2
|
Yang X, Zhang B, Ruan J, Duanmu K, Chen W. Palladium-Catalyzed Allylation of Endocyclic 1-Azaallyl Anions. J Org Chem 2024; 89:8896-8905. [PMID: 38856706 DOI: 10.1021/acs.joc.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Endocyclic 1-azaallyl anions engage allyl acetates in a palladium-catalyzed allylation followed by reduction to give unprotected 2-(hetero)aryl-3-allylpiperidines and 2-allyl-3-arylmorpholines, products not easily accessible by other means. The allyl group is then readily transformed into a variety of functional groups. Preliminary studies on the asymmetric variant of the reaction using an enantiomerically pure BI-DIME-type ligand provide the product with moderate enantioselectivity. Computational studies suggest that energy barriers of inner-sphere reductive elimination and outer-sphere nucleophilic substitution are almost the same, which makes both of them possible reaction pathways. In addition, the inner-sphere mechanism displays an enantiodiscriminating C-C bond forming step, while the outer-sphere mechanism is much less selective, which combined to give the asymmetric variant of the reaction moderate enantioselectivity.
Collapse
Affiliation(s)
- Xiaoyu Yang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Biao Zhang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Junhao Ruan
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Kaining Duanmu
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Weijie Chen
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| |
Collapse
|
3
|
Wang S, Zheng N, Deji C, Hu Q, Wu X, Zhan R, Huang H, Zhang Y. Visible-Light-Promoted [4π + 2σ] Annulation of Dienes and Alkylamines via Dual Inert C(sp 3)-H Bond Activation. Org Lett 2024. [PMID: 38781570 DOI: 10.1021/acs.orglett.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Herein, visible-light-promoted [4π + 2σ] annulation of dienes and alkylamines was achieved via dual C(sp3)-H bond functionalization of alkylamines. The elusive enamine precursors are generated under mild conditions by photoredox catalysis, efficiently annulated by the diene, and simultaneously functionalized with two aliphatic C(sp3)-H bonds, resulting in the productive synthesis of new aromatic rings. The aromatic ring construction provides direct access to 2-hydroxybenzophenone derivatives in high yields (up to 90%). This [4π + 2σ] annulation reaction demonstrates mild reaction conditions, high reaction efficiency, and broad functional group tolerance, and this synthetic protocol has been made available for the late-stage transformation of natural products and commercial drugs.
Collapse
Affiliation(s)
- Shuzhong Wang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Nuowen Zheng
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Cuo Deji
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Qingzhong Hu
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Ruoting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Huicai Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yue Zhang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
4
|
Li H, Wang N, Zhou Z, Long L, Li X, Qian Y, Qiao L. Domino Michael/Oxa-Michael Reactions of the Unsymmetric Double Michael Acceptor for Access to Bicyclic Furo[2,3- b]pyrrole. J Org Chem 2024; 89:5883-5895. [PMID: 38600052 DOI: 10.1021/acs.joc.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
By creating an unsymmetric double Michael acceptor 1, we were able to synthesize the nonaromatic-fused bicyclic furo[2,3-b]pyrrole nucleus using a domino Michael/oxa-Michael reaction. Adopting benzoyl acetonitrile 2d (CN as the electron-withdrawing group) as a substrate, we discovered a (DHQ)2AQN-catalyzed method for high diastereo- and enantioselectivity of those products. The reaction path has been determined by isolating the reaction intermediates, and density functional theory calculations support these findings. Beyond providing a synthetic approach, this work illustrated the compounds' possible use in antitumor activity.
Collapse
Affiliation(s)
- Hang Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Ning Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Zhitin Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xun Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yiping Qian
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Liang Qiao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
5
|
Verma K, Mishra M, Maharana PK, Bhattacharyya H, Saha S, Punniyamurthy T. Sc(OTf) 3-Catalyzed Domino C-C/C-N Bond Formation of Aziridines with Quinones via Radical Pathway. Org Lett 2023; 25:7933-7938. [PMID: 37874042 DOI: 10.1021/acs.orglett.3c03318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sc(III)-catalyzed domino C-C and C-N bond formation of N-sulfonyl aziridines with quinones has been accomplished to furnish functionalized indolines at a moderate temperature. The umpolung reactivity of aziridines, radical pathway, mild reaction conditions, substrate scope, and coupling of drug molecules in a postsynthetic application are the important practical features.
Collapse
Affiliation(s)
- Kshitiz Verma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Hemanga Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | |
Collapse
|
6
|
Zhang YF, Chen HN, Xiao Y, Cui Z, Wang WD, Xu GQ. Organic photoredox catalyzed C(sp 3)-H functionalization of saturated aza-heterocycles via a cross-dehydrogenative coupling reaction. Org Biomol Chem 2023; 21:8284-8288. [PMID: 37814526 DOI: 10.1039/d3ob01438j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Herein we present a novel protocol to access α-functionalized saturated aza-heterocycles, and a variety of nucleophilic groups, such as indole, naphthol, phenol, pyrrole, furyl, nitromethyl, and cyano, could be easily installed into saturated aza-heterocycles. Furthermore, a range of biologically valuable 3,3'-diindolylmethane derivatives could also be readily accessed under mild photocatalytic conditions.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Han-Nan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Yi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Zhencun Cui
- Department of Nuclear Medicine, MOE Frontiers Science Center for Rare Isotopes, Second Hospital of Lanzhou University, Lanzhou University, Lanzhou 730030, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China.
| |
Collapse
|
7
|
Zhang B, Ruan J, Seidel D, Chen W. Palladium-Catalyzed Arylation of Endocyclic 1-Azaallyl Anions: Concise Synthesis of Unprotected Enantioenriched cis-2,3-Diarylpiperidines. Angew Chem Int Ed Engl 2023; 62:e202307638. [PMID: 37461285 PMCID: PMC10530244 DOI: 10.1002/anie.202307638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Unprotected cis-2,3-diarylpiperidines are synthesized through an unprecedented palladium-catalyzed cross-coupling reaction between aryl halides and elusive endocyclic 1-azaallyl anions. These intermediates are generated in situ by the deprotonation of 2-aryl-1-piperideines, precursors that are readily prepared in two operations from simple piperidines. An asymmetric version of this reaction with (2R, 3R)-iPr-BI-DIME as the ligand provides products in moderate to good yields and enantioselectivities. This study significantly expands the synthetic utility of endocyclic 1-azaallyl anions.
Collapse
Affiliation(s)
- Biao Zhang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. of China
| | - Junhao Ruan
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. of China
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Weijie Chen
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. of China
| |
Collapse
|
8
|
Oku N, Miura T. Cu-Catalyzed Double C(sp 3)-H Functionalization of Ethylarenes to Form Arylethanolamines. J Org Chem 2023. [PMID: 37163526 DOI: 10.1021/acs.joc.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A double C(sp3)-H functionalization of ethylarenes with alcohols and N-fluorobenzenesulfonimide is reported. The reaction proceeds in three stages. (1) Cu-catalyzed benzylic alkoxylation of ethylarenes gives 1-(1-alkoxyethyl)benzenes. (2) The resulting 1-(1-alkoxyethyl)benzenes are gradually converted into vinylarenes. (3) Cu-catalyzed aminoalkoxylation of the intermediary vinylarenes yields arylethanolamines. Overall, the C-N and C-O bonds are introduced regioselectively at the homobenzylic and benzylic positions of ethylarenes.
Collapse
Affiliation(s)
- Naoki Oku
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
| | - Tomoya Miura
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
9
|
Liu C, Chen HN, Xiao TF, Hu XQ, Xu PF, Xu GQ. Organic photoredox catalyzed dealkylation/acylation of tertiary amines to access amides. Chem Commun (Camb) 2023; 59:2003-2006. [PMID: 36723060 DOI: 10.1039/d2cc05842a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A mild metal-free C-N bond activation strategy for the direct conversion of inert tertiary amines with acyl chlorides into tertiary amides via organic photoredox catalysis is presented. In this protocol, a novel organic photocatalyst (Cz-NI-Ph) that showed excellent catalytic performance during C-N bond cleavage is developed. Moreover, this reaction features green and mild conditions, broad substrate scope, and readily available raw materials.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Han-Nan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
10
|
Gao Q, Guo Y, Sun Z, He X, Gao Y, Fan G, Cao P, Fang L, Bai S, Jia Y. Deaminative Cyclization of Tertiary Amines for the Synthesis of 2-Arylquinoline Derivatives with a Nonsubstituted Vinylene Fragment. Org Lett 2023; 25:109-114. [PMID: 36484535 DOI: 10.1021/acs.orglett.2c03904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With triethylamine as a vinylene source, a convenient protocol for the regioselective synthesis of β,γ-nonsubstituted 2-arylquinolines from aldehydes and arylamines has been accomplished. The deaminative cyclization is also extended to long-chain tertiary alkylamines, enabling diverse alkyl groups to be concurrently installed into the pyridine rings. This process demonstrates a new conversion pathway for the simultaneous dual C(sp3)-H bond functionalization of tertiary amines, wherein the transient acyclic enamines generated in situ undergo the Povarov reaction.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenhua Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaodan He
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Yiqiao Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yanlong Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
11
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
12
|
Nasrollahzadeh M, Shafiei N, Orooji Y. Magnetic chitosan stabilized Cu(II)-tetrazole complex: an effective nanocatalyst for the synthesis of 3-imino-2-phenylisoindolin-1-one derivatives under ultrasound irradiation. Sci Rep 2022; 12:6724. [PMID: 35468913 PMCID: PMC9038735 DOI: 10.1038/s41598-022-10591-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/11/2022] [Indexed: 01/04/2023] Open
Abstract
In the present research, a recyclable catalyst has been prepared via a simple approach using chitosan as a linear polysaccharide. This paper reports the synthesis of novel copper(II) complex of 5-phenyl-1H-tetrazole immobilized on magnetic chitosan (MCS@PhTet@Cu(II)) as an effective catalyst. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and inductively coupled plasma mass spectrometry (ICP-MS) techniques were applied for the characterization of the catalyst. The catalytic activity of MCS@PhTet@Cu(II) was evaluated in the ultrasound-assisted synthesis of 3-imino-2-phenylisoindolin-1-one derivatives via the reaction between benzoyl chloride and arylcyanamides in ethanol at ambient temperature. Utilizing a wide variety of arylcyanamides under mild conditions, no use of toxic organic solvents, moderate reaction time, high yields along with catalyst excellent reusability and easy separation of the products without any tedious separation techniques, made this method a novel and simple process. The resulting heterogeneous catalyst showed valuable advantages such as easier work-up, better stability, and greater separation ability using an external magnet. The catalyst showed high efficacy and recyclability even after five cycles with no significant loss of its efficacy. The present methodology provides a path for the preparation of structurally diverse heterocyclic compounds, which may exhibit important biological activity.
Collapse
Affiliation(s)
| | - Nasrin Shafiei
- Department of Chemistry, Faculty of Science, University of Qom, 37185-359, Qom, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
13
|
Zhang JH, Xiao TF, Ji ZQ, Chen HN, Yan PJ, Luo YC, Xu PF, Xu GQ. Organic photoredox catalytic amino-heteroarylation of unactivated olefins to access distal amino ketones. Chem Commun (Camb) 2022; 58:2882-2885. [PMID: 35133366 DOI: 10.1039/d1cc07189k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here we describe a metal-free amino-heteroarylation of unactivated olefins via organic photoredox catalysis, providing a concise and efficient approach for the rapid synthesis of various δ (β, ε)-amino ketones under mild conditions. This protocol demonstrates that the new photocatalyst Cz-NI developed by our group has an excellent photoredox catalytic performance. Finally, a series of mechanistic experiments and DFT calculations indicate that this transformation undergoes a photoredox catalytic sequential radical addition/functional group migration process.
Collapse
Affiliation(s)
- Ji-Hua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zi-Qin Ji
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Han-Nan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Pen-Ji Yan
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
14
|
Yi MJ, Xiao TF, Li WH, Zhang YF, Yan PJ, Zhang B, Xu PF, Xu GQ. Organic photoredox catalytic α-C(sp 3)-H phosphorylation of saturated aza-heterocycles. Chem Commun (Camb) 2021; 57:13158-13161. [PMID: 34812446 DOI: 10.1039/d1cc05767g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A metal-free C(sp3)-H phosphorylation of saturated aza-heterocycles via the merger of organic photoredox and Brønsted acid catalyses was established under mild conditions. This protocol provided straightforward and economic access to a variety of valuable α-phosphoryl cyclic amines by using commercially available diarylphosphine oxide reagents. In addition, the D-A fluorescent molecule DCQ was used for the first time as a photocatalyst and exhibited an excellent photoredox catalytic efficiency in this transformation. A series of mechanistic experiments and DFT calculations demonstrated that this transformation underwent a sequential visible light photoredox catalytic oxidation/nucleophilic addition process.
Collapse
Affiliation(s)
- Ming-Jun Yi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Wen-Hui Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yi-Fan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Pen-Ji Yan
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|