1
|
Amano K, Kawasaki-Takasuka T, Mori K. Synthesis of Polysubstituted Naphthalenes by a Hydride Shift Mediated C-H Bond Functionalization/Aromatization Sequence. Org Lett 2024; 26:1824-1827. [PMID: 38416568 DOI: 10.1021/acs.orglett.3c04355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
A synthetic strategy for forming multisubstituted naphthalenes based on hydride shift mediated C(sp3)-H bond functionalization was developed. This strategy consists of three successive transformations: (1) an intramolecular hydride shift mediated C(sp3)-H bond functionalization; (2) a decarboxylative fragmentation; and (3) an oxidation reaction. When benzylidene malonates having a 2-alkoxyethyl group at the ortho position were treated with a catalytic amount of Al(OTf)3, the hydride shift/cyclization reaction proceeded smoothly to afford tetralin derivatives in good chemical yields. The resulting tetralins were easily converted into naphthalenes by exposing them to modified Krapcho decarboxylation reaction conditions (LiCl, DMSO, and heating under an O2 atmosphere). The one-pot operation of these two reactions was also realized.
Collapse
Affiliation(s)
- Koutarou Amano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Tomoko Kawasaki-Takasuka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
2
|
Okawa H, Kawasaki-Takasuka T, Mori K. Silyl-Group Boosted Internal Redox Reaction: Hydride Shift from an Aliphatic Secondary Position for the Formation of Six- and Seven-Membered Carbocycles. Org Lett 2024; 26:1662-1666. [PMID: 38382544 DOI: 10.1021/acs.orglett.4c00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We report a hydride shift/cyclization reaction at the aliphatic secondary position (methylene group). The key to accomplishing this reaction was the employment of benzylidene malonate having a silyl group β to the hydride donor carbon. When the corresponding malonates were treated with a catalytic amount of Al(OTf)3, the [1,5]-hydride shift from the simple aliphatic secondary position proceeded smoothly to afford silyl-group substituted tetralin derivatives in excellent chemical yields (up to 98%). This reaction system was applied to the formation of seven-membered carbocycles via the [1,6]-hydride shift mediated process.
Collapse
Affiliation(s)
- Hiroto Okawa
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Tomoko Kawasaki-Takasuka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
3
|
Wei C, Li Y, Yao X, Zhang K, Cai L. TFE-Facilitated Synthesis of Tetrahydropyridino[2,3- d]pyrimidine via Cascade [1,5]-Hydride Transfer/Cyclization. J Org Chem 2023. [PMID: 38010354 DOI: 10.1021/acs.joc.3c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
An efficient fluorinated alcohol-driven cascade [1,5]-hydride transfer/cyclization between o-amino pyridyl aldehydes and primary amines has been developed. This unique transformation enabled an array of tetrahydropyridino[2,3-d]pyrimidine construction. Furthermore, the encouraging antifungal activity of Thanatephorus cucumeris was demonstrated by this tetrahydropyridino[2,3-d]pyrimidine core structure.
Collapse
Affiliation(s)
- Cong Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kui Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Shibata S, Amano K, Kojima T, Mori K. Lewis acid-catalyzed formal 1,3-aminomethyl migration. Chem Commun (Camb) 2023; 59:9976-9979. [PMID: 37503720 DOI: 10.1039/d3cc03059h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Here we report a Lewis acid-catalyzed 1,3-aminomethyl migration rection. When δ-amino acid derivatives were treated with a catalytic amount of Sc(OTf)3, 1,3-migration of the aminomethyl group proceeded smoothly to afford β-amino acid derivatives in moderate to good chemical yields. Detailed investigation suggested that this migration reaction proceeded through the fragmentation/recombination pathway.
Collapse
Affiliation(s)
- Suzuka Shibata
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology. 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Koutarou Amano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology. 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Tatsuhiro Kojima
- Department of Applied Chemistry, Kobe City College of Technology (KCCT) 8-3, Gakuen-Higashimachi, Nishi-ku, Kobe, 651-2194, Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology. 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
5
|
Chen LL, Li F, Yang Q, Ye YF, Yang WW, Wang YB. Base-Promoted Decarboxylative Annulation of Methyl 2-(2-Bromophenyl)acetates and Ynones to Access Benzoxepines. J Org Chem 2023. [PMID: 36799925 DOI: 10.1021/acs.joc.2c02870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A simple and efficient base-mediated decarboxylative annulation of ynones with methyl 2-(2-bromophenyl)acetates has been developed. A broad range of benzoxepines were prepared with a broad substrate scope and high regioselectivity in moderate to excellent yields under transition-metal-free conditions. This method proceeds through a tandem [2 + 4] annulation, ring-opening decarboxylative reaction, and the intramolecular nucleophilic aromatic substitution reaction. Additionally, the key intermediates were successfully obtained and characterized unambiguously by single-crystal X-ray crystallography, which could favorably support a decarboxylative annulation mechanism. Furthermore, gram-scale reaction and synthetic applications for the further functionalization are also studied.
Collapse
Affiliation(s)
- Lu-Lu Chen
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Feng Li
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qing Yang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Ya-Fang Ye
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Wan-Wan Yang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yan-Bo Wang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Wang M, Ye W, Sun N, Yu W, Chang J. Synthesis of Quinazolinone-Fused Tetrahydroisoquinolines and Related Polycyclic Scaffolds by Iodine-Mediated sp 3 C-H Amination. J Org Chem 2023; 88:1061-1074. [PMID: 36630199 DOI: 10.1021/acs.joc.2c02509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An iodine-mediated intramolecular sp3 C-H amination reaction producing quinazolinone-fused polycyclic skeletons from 2-aminobenzamide precursors is reported. This reaction does not use transition metals, has a broad substrate scope, and can be used on a gram scale. Under the optimal reaction conditions, a variety of quinazolinone-fused tetrahydroisoquinolines and derivatives of Rutaecarpine were synthesized from readily accessible compounds. The reaction proceeds well with crude 2-aminobenzamide derivatives, allowing for the synthesis of the products from simple 2-aminobenzoic acids and tetrahydroisoquinolines without purification of the 2-aminobenzamide intermediates. Preliminary biological experiments have identified Cereblon (CRBN) inhibitory activity and relevant anti-myeloma medicinal properties in some of these polycyclic products.
Collapse
Affiliation(s)
- Manman Wang
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjun Ye
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Nannan Sun
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
8
|
Cao L, Hu F, Dong J, Zhang XM, Li SS. Aromatization-driven cascade [1,5]-hydride transfer/cyclization for synthesis of spirochromanes. Org Chem Front 2023. [DOI: 10.1039/d3qo00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
An aromatization-driven hydride transfer-involved α-C(sp3)–H bond functionalization of the oxygen atom was developed. Easily prepared p-quinone methides were applied to initiate [1,5]-hydride transfer/cyclization for generating spirochromanes.
Collapse
|
9
|
Shen YB, Hu F, Li SS. Advances in α-C(sp3)–H functionalization of ethers via cascade [1,n]-hydride transfer/cyclization. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Mori K, Okawa H. Hydride shift mediated C(sp3)–H bond functionalization starting from non-aniline/phenol type substrates: Evolution into a sequential system. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Zaitseva E, Smirnov A, Timashev V, Malyshev W, Zhigileva E, Mikhaylov A, Medvedev M, Baleeva N, Baranov MS. BF3 mediated [1,5]‐Hydride Shift Triggered Cyclization: Thioethers Join the Game. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elvira Zaitseva
- IBCh RAS: FBGUN Institut bioorganiceskoj himii im akademikov M M Semakina i U A Ovcinnikova Rossijskoj akademii nauk Department of Chemistry Moskva RUSSIAN FEDERATION
| | - Alexander Smirnov
- IBCh RAS: FBGUN Institut bioorganiceskoj himii im akademikov M M Semakina i U A Ovcinnikova Rossijskoj akademii nauk Department of Chemistry Moskva RUSSIAN FEDERATION
| | - Vladimir Timashev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Department of Chemistry Moskva RUSSIAN FEDERATION
| | - Wadim Malyshev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Department of Chemistry Moskva RUSSIAN FEDERATION
| | - Ekaterina Zhigileva
- IBCh RAS: FBGUN Institut bioorganiceskoj himii im akademikov M M Semakina i U A Ovcinnikova Rossijskoj akademii nauk Department of Chemistry Moskva RUSSIAN FEDERATION
| | - Andrey Mikhaylov
- IBCh RAS: FBGUN Institut bioorganiceskoj himii im akademikov M M Semakina i U A Ovcinnikova Rossijskoj akademii nauk Department of Chemistry Moskva RUSSIAN FEDERATION
| | - Michael Medvedev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Department of Chemistry Moskva RUSSIAN FEDERATION
| | - Nadezhda Baleeva
- IBCh RAS: FBGUN Institut bioorganiceskoj himii im akademikov M M Semakina i U A Ovcinnikova Rossijskoj akademii nauk Department of Chemistry Moskva RUSSIAN FEDERATION
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences Group of chemistry of heterocyclic compounds Ulitsa Miklukho-Maklaya, 16/10 117997 Moscow RUSSIAN FEDERATION
| |
Collapse
|