1
|
Bairwa M, Verma RK, Bharadwaj KC. Domino Sequence of Ketimization and Electrophilic Amination for an Inverse Aza Intramolecular Morita-Baylis-Hillman Adduct. J Org Chem 2024; 89:14811-14817. [PMID: 39361826 DOI: 10.1021/acs.joc.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Morita-Baylis-Hillman (MBH) reaction, typically catalyzed by a Lewis base, is a popular and useful method for C-C bond formation. Unfortunately, it is limited by a slow reaction rate and has sensitivity toward steric and electronic parameters. Despite tremendous efforts, the versatility of the reaction keeps the quest open for new mechanistic and catalytic pathways. Here, we have reported a Bro̷nsted acid-catalyzed, electrophilic amination (Umpolung of imine) as a method for an inverse Aza Intramolecular MBH adduct in the form of 2-acylindole. Umpolung of imine with nitrogen acting as an electrophilic center has been achieved. Interestingly, the reaction was also shown to occur under catalyst-free conditions also. The expected products of ketimine formation, 6π electrocyclization, or quinoline formation were least/not observed. A large number of examples have demonstrated the reaction strength. β-aryl-substituted acrylate and acrylamide (cinnamates and cinnamides), which are extremely sluggish in conventional MBH chemistry, are the highlights of the developed methodology. The annulated product exhibited keto-enol tautomerism, which was proven by 1H NMR integrals. As an application, another tandem reaction in the form of Michael addition on a highly complex amine was carried out to provide spiro-annulated indole.
Collapse
Affiliation(s)
- Mansingh Bairwa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rakesh Kumar Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
2
|
Chen PC, You PY, Wu LY, Chin Z, Chiu KH, Hsieh ST, Huang YW. Diastereodivergent α-Homoallylation of Cyclic Enones. Org Lett 2024. [PMID: 38181402 DOI: 10.1021/acs.orglett.3c04151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
α,β-Unsaturated carbonyls are essential structural motifs for nucleophiles of disease-related proteins. Methods for stereoselective functionalizations at the α-position include the Morita-Baylis-Hillman, Negishi, Sonogashira, Stille, and Rauhut-Currier reactions. Described here is a method for the diastereodivergent α-homoallylation of cyclic enones via a sequence of conjugate addition, aldol condensation, and diastereoselective [3,3]-sigmatropic rearrangement. Mechanistic investigations revealed that the [3,3]-sigmatropic rearrangement proceeds with transfer of chirality. These inspire a photocatalyzed olefin isomerization of the aldol condensation product leading to a highly diastereoselective [3,3]-sigmatropic rearrangement to furnish the α-homoallylation of cyclic enones. Importantly, this photocatalyzed olefin isomerization/diastereoselective [3,3]-sigmatropic rearrangement reaction sequence permits a full stereocontrol of the exo-β-position featuring an allyl group as a synthetic functional handle.
Collapse
Affiliation(s)
- Po-Chou Chen
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan, Republic of China
| | - Pei-Yun You
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan, Republic of China
| | - Li-Yun Wu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan, Republic of China
| | - Zhanyi Chin
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan, Republic of China
| | - Kuan-Hua Chiu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan, Republic of China
| | - Song-Ting Hsieh
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan, Republic of China
| | - Yu-Wen Huang
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan, Republic of China
| |
Collapse
|
3
|
Bharadwaj KC. Chemoselective Intramolecular Morita-Baylis-Hillman Reaction; Acrylamide and Ketone as Sluggish Reacting Partners on a Labile Framework. J Org Chem 2024. [PMID: 38164748 DOI: 10.1021/acs.joc.3c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Chemoselectivity is an important issue frequently encountered while working over labile precursors. Carbonyl compounds with a heteroatom at the β carbon are sensitive precursors because they are prone to elimination under different conditions. Morita-Baylis-Hillman (MBH) reaction, although a widespread method for C-C bond formation, has its own limitations. Acrylamide and ketone are such limitations of the MBH reaction. Using them together for an intramolecular MBH (IMBH) reaction on a labile framework prone to elimination is a significant 2-fold synthetic challenge. A highly chemoselective IMBH reaction on such precursors has been established using 1,4-diazabicyclo[2.2.2]octane (DABCO) as a promoter. The protocol leads to quick access to a diversely substituted and functionalized piperidone framework in high yields. Various substitution patterns in the form of 34 successful examples have been studied. A diastereoselective version and tolerance to various functional and protecting groups are the added advantages of the developed methodology. A tertiary carbon at the β position of ketone, however, led to complete reversal of selectivity and gave only the elimination product. Control experiments toward a better understanding of the substitution pattern, role of catalyst, and mechanistic study have been carried out. As an application of the IMBH adduct, a one-step allylic rearrangement for the dihydropyridone framework has also been demonstrated.
Collapse
|
4
|
Papis M, Bucci R, Contini A, Gelmi ML, Lo Presti L, Poli G, Broggini G, Loro C. Phosphine-Catalyzed Domino Regio- and Stereo-Selective Hexamerization of 2-(Bromomethyl)acrylates to 1,2-Bis(cyclohexenyl)ethenyl Derivatives. Org Lett 2023; 25:7380-7384. [PMID: 37772494 PMCID: PMC10580324 DOI: 10.1021/acs.orglett.3c02836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Indexed: 09/30/2023]
Abstract
A phosphine-catalyzed domino assembly of six units of 2-bromomethyl acrylates afforded polyalkenyl adducts containing two cyclohexenyl rings. This reaction occurs under mild conditions providing the final product by formation of seven carbon-carbon bonds and four stereocenters. Experimental and computational studies support an initial dimerization of the substrate, which in turn trimerizes involving two totally regio- and stereocontrolled Diels-Alder cycloadditions. The yield of the hexamerization of the 2-bromomethyl acrylates depends on the size of the ester function. The protocol has also proved to be practicable on a gram scale.
Collapse
Affiliation(s)
- Marta Papis
- Dipartimento
di Scienza e Alta Tecnologia, Università
degli Studi dell’Insubria, Via Valleggio 9, 22100, Como, Italy
| | - Raffaella Bucci
- Dipartimento
di Scienze Farmaceutiche, DISFARM Università
degli Studi di Milano, Via Venezian 21, 20133, Milano, Italy
| | - Alessandro Contini
- Dipartimento
di Scienze Farmaceutiche, DISFARM Università
degli Studi di Milano, Via Venezian 21, 20133, Milano, Italy
| | - Maria Luisa Gelmi
- Dipartimento
di Scienze Farmaceutiche, DISFARM Università
degli Studi di Milano, Via Venezian 21, 20133, Milano, Italy
| | - Leonardo Lo Presti
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi
19, 20133 Milano, Italy
| | - Giovanni Poli
- Sorbonne
Université, Faculté des Sciences et Ingénierie,
CNRS, Institut Parisien de Chimie Moléculaire,
IPCM, 4 place Jussieu, 75005 Paris, France
| | - Gianluigi Broggini
- Dipartimento
di Scienza e Alta Tecnologia, Università
degli Studi dell’Insubria, Via Valleggio 9, 22100, Como, Italy
| | - Camilla Loro
- Dipartimento
di Scienza e Alta Tecnologia, Università
degli Studi dell’Insubria, Via Valleggio 9, 22100, Como, Italy
| |
Collapse
|
5
|
Zhang J, Hao W, Chen Y, Wang Z, Yao J, Yao W. Phosphine-catalyzed Rauhut-Currier reaction of γ-alkyl allenoate and subsequent trapping using the Diels-Alder reaction. Chem Commun (Camb) 2023; 59:11720-11723. [PMID: 37702327 DOI: 10.1039/d3cc03151a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
We have disclosed a Rauhut-Currier reaction of γ-alkyl-substituted allenoate, catalyzed by L-valine-derived amide phosphine, to form trisubstitued allenoate, which was trapped by maleimide or DMAD via the Diels-Alder reaction. Exo-bicyclic succinimide derivatives including three continuous stereocenters with an exo-carbon-carbon double bound were constructed in up to quantitative yields with high stereospecificity.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Wei Hao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Ying Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| |
Collapse
|
6
|
Nakano Y, Maddigan-Wyatt JT, Lupton DW. Enantioselective Catalysis by the Umpolung of Conjugate Acceptors Involving N-Heterocyclic Carbene or Organophosphine 1,4-Addition. Acc Chem Res 2023; 56:1190-1203. [PMID: 37093247 DOI: 10.1021/acs.accounts.3c00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
ConspectusConjugate acceptors are one of the most common electrophilic functional groups in organic synthesis. While useful in a diverse range of transformations, their applications are largely dominated by the reactions from which their name is derived (i.e., as an acceptor of nucleophiles in the conjugate position). In 2014, we commenced studies focused on their ability to undergo polarity inversion through the conjugate addition of Lewis base catalysts. The first step in this process provides an enolate, from which the well-developed Rauhut-Currier (RC) and Morita-Baylis-Hillman (MBH) reactions can occur; however, tautomerization to provide a species in which the β-carbon of the conjugate acceptor can now act as a donor is also possible. When we commenced studies on this topic, reaction designs with this type of species, particularly when accessed using N-heterocyclic carbenes (NHCs), had been reported on only a handful of occasions. Despite a lack of development, conceptually it was felt that reactions taking advantage of polarity switching by Lewis base conjugate addition have a number of desirable features. Perhaps the most significant is the potential to reimagine a ubiquitous functional group as an entirely new synthon, namely, a donor to electrophiles from the conjugate position.Our work has focused on catalysis with both simple conjugate acceptors and also those embedded within more complicated substrates; the latter has allowed a series of cycloisomerizations and annulation reactions to be achieved. In most cases, the reactions have been possible using enantioenriched chiral NHCs or organophosphines as the Lewis base catalysts thereby delivering enantioselective approaches to novel cyclic molecules. While related chemistry can be accessed with either family of catalyst, in all cases reactions have been designed to take advantage of one or the other. In addition, a fine balance exists between reactions that exploit the initially formed enolate and those that involve the polarity-inverted β-anion. In our studies, this balance is addressed through substrate design, although catalyst control may also be possible. We consider the chemistry discussed in this Account to be in its infancy. Significant challenges remain to be addressed before our broad aim of discovering a universal approach to the polarity inversion of all conjugate acceptors can be achieved. These challenges broadly relate to chemoselectivity with substrates bearing multiple electrophilic functionalities, reliance upon the use of conjugate acceptors, and catalyst efficiency. To address these challenges, advances in catalyst design and catalyst cooperativity are likely required.
Collapse
Affiliation(s)
- Yuji Nakano
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | | | - David W Lupton
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|