1
|
Shen H, Cui Y, Liang S, Zhou S, Li Y, Wu Y, Song J. A High-Throughput Biosensing Approach for Rapid Screening of Compounds Targeting the hNav1.1 Channel: Marine Toxins as a Case Study. Mar Drugs 2025; 23:119. [PMID: 40137305 PMCID: PMC11943507 DOI: 10.3390/md23030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Voltage-gated sodium (Nav) channels play a crucial role in initiating and propagating action potentials throughout the heart, muscles and nervous systems, making them targets for a number of drugs and toxins. While patch-clamp electrophysiology is considered the gold standard for measuring ion channel activity, its labor-intensive and time-consuming nature highlights the need for fast screening strategies to facilitate a preliminary selection of potential drugs or hazards. In this study, a high-throughput and cost-effective biosensing method was developed to rapidly identify specific agonists and inhibitors targeting the human Nav1.1 (hNav1.1) channel. It combines a red fluorescent dye sensitive to transmembrane potentials with CHO cells stably expressing the hNav1.1 α-subunit (hNav1.1-CHO). In the initial screening mode, the tested compounds were mixed with pre-equilibrated hNav1.1-CHO cells and dye to detect potential agonist effects via fluorescence enhancement. In cases where no fluorescence enhancement was observed, the addition of a known agonist veratridine allowed the indication of inhibitor candidates by fluorescence reduction, relative to the veratridine control without test compounds. Potential agonists or inhibitors identified in the initial screening were further evaluated by measuring concentration-response curves to determine EC50/IC50 values, providing semi-quantitative estimates of their binding strength to hNav1.1. This robust, high-throughput biosensing assay was validated through comparisons with the patch-clamp results and tested with 12 marine toxins, yielding consistent results. It holds promise as a low-cost, rapid, and long-term stable approach for drug discovery and non-target screening of neurotoxins.
Collapse
Affiliation(s)
- Huijing Shen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (H.S.); (Y.W.)
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; (S.L.); (S.Z.)
| | - Yuxia Cui
- Department of Cardiology, Center for Cardiovascular Translational Research, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing 100044, China;
| | - Shiyuan Liang
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; (S.L.); (S.Z.)
| | - Shuang Zhou
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; (S.L.); (S.Z.)
| | - Yingji Li
- ICE Bioscience Inc., Beijing 100176, China;
| | - Yongning Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (H.S.); (Y.W.)
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; (S.L.); (S.Z.)
| | - Junxian Song
- Department of Cardiology, Center for Cardiovascular Translational Research, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing 100044, China;
| |
Collapse
|
2
|
Chen P, Wang J, Zhang S, Wang Y, Sun Y, Bai S, Wu Q, Cheng X, Cao P, Qi X. Total syntheses of Tetrodotoxin and 9-epiTetrodotoxin. Nat Commun 2024; 15:679. [PMID: 38263179 PMCID: PMC10806222 DOI: 10.1038/s41467-024-45037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Tetrodotoxin and congeners are specific voltage-gated sodium channel blockers that exhibit remarkable anesthetic and analgesic effects. Here, we present a scalable asymmetric syntheses of Tetrodotoxin and 9-epiTetrodotoxin from the abundant chemical feedstock furfuryl alcohol. The optically pure cyclohexane skeleton is assembled via a stereoselective Diels-Alder reaction. The dense heteroatom substituents are established sequentially by a series of functional group interconversions on highly oxygenated cyclohexane frameworks, including a chemoselective cyclic anhydride opening, and a decarboxylative hydroxylation. An innovative SmI2-mediated concurrent fragmentation, an oxo-bridge ring opening and ester reduction followed by an Upjohn dihydroxylation deliver the highly oxidized skeleton. Ruthenium-catalyzed oxidative alkyne cleavage and formation of the hemiaminal and orthoester under acidic conditions enable the rapid assembly of Tetrodotoxin, anhydro-Tetrodotoxin, 9-epiTetrodotoxin, and 9-epi lactone-Tetrodotoxin.
Collapse
Affiliation(s)
- Peihao Chen
- School of Life Sciences, Peking University, Beijing, 100871, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Jing Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Shuangfeng Zhang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Yan Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Yuze Sun
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Songlin Bai
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Qingcui Wu
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Xinyu Cheng
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- National Institute of Biological Sciences, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100730, China
| | - Peng Cao
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Yaegashi Y, Kudo Y, Ueyama N, Onodera KI, Cho Y, Konoki K, Yotsu-Yamashita M. Isolation and Biological Activity of 9- epiTetrodotoxin and Isolation of Tb-242B, Possible Biosynthetic Shunt Products of Tetrodotoxin from Pufferfish. JOURNAL OF NATURAL PRODUCTS 2022; 85:2199-2206. [PMID: 35994072 DOI: 10.1021/acs.jnatprod.2c00588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tetrodotoxin (TTX, 1) is a potent voltage-gated sodium channel blocker detected in certain marine and terrestrial organisms. We report here a new TTX analogue, 9-epiTTX (2), and a TTX-related compound, Tb-242B (4), isolated from the pufferfish Takifugu flavipterus and Dichotomyctere ocellatus, respectively. NMR analysis suggested that 2 exists as a mixture of hemilactal and 10,8-lactone forms, whereas other reported TTX analogues are commonly present as an equilibrium mixture of hemilactal and 10,7-lactone forms. Compound 2 and TTX were confirmed not to convert to each other by incubation under neutral and acidic conditions at 37 °C for 24 h. Compound 4 was identified as the 9-epimer of Tb-242A (3), previously reported as a possible biosynthetic precursor of TTX. Compound 4 was partially converted to 3 by incubation in a neutral buffer at 37 °C for 7 days, whereas 3 was not converted to 4 under this condition. Compound 2 was detected in several TTX-containing marine animals and a newt. Mice injected with 600 ng of 2 by intraperitoneal injection did not show any adverse symptoms, suggesting that the C-9 configuration in TTX is critical for its biological activity. Based on the structures, 2 and 4 were predicted to be shunt products for TTX biosynthesis.
Collapse
Affiliation(s)
- Yuji Yaegashi
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Nozomi Ueyama
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Ken-Ichi Onodera
- Faculty of Agriculture and Marine Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
4
|
Nishiumi M, Miyasaka T, Adachi M, Nishikawa T. Total Syntheses of the Proposed Biosynthetic Intermediates of Tetrodotoxin Tb-210B, Tb-226, Tb-242C, and Tb-258. J Org Chem 2022; 87:9023-9033. [PMID: 35765754 DOI: 10.1021/acs.joc.2c00704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The collective synthesis of the four spiro-cyclic guanidines Tb-210B, Tb-226, Tb-242C, and Tb-258, all of which have been isolated from puffer fish and are considered possible biosynthetic intermediates of tetrodotoxin, has been achieved. Our synthesis is based on the stepwise deoxygenation or hydroxylation of a common intermediate, prepared from a known oxazoline.
Collapse
Affiliation(s)
- Masafumi Nishiumi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tadachika Miyasaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masaatsu Adachi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|