1
|
Mondal D, Elramadi E, Kundu S, Schmittel M. Dissipative sequential catalysis via six-component machinery. Chem Commun (Camb) 2024; 60:4659-4662. [PMID: 38596877 DOI: 10.1039/d4cc00786g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Triphenyl phosphane (TPP) and an epoxide as a fuel system transiently transformed a non-catalytic six-component turnstile into a four-component catalytic rotor releasing N-methyl pyrrolidine and a copper(I) complex. The two latter compounds acted synergistically as catalysts to perform first a Michael addition and then a 5-exo-dig cyclization, giving rise to dissipative sequential catalysis.
Collapse
Affiliation(s)
- Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| | - Emad Elramadi
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| |
Collapse
|
2
|
Paul I, Valiyev I, Schmittel M. Chemically Fueled Logic AND Gate with Double Encoding in the Time Domain. J Am Chem Soc 2024; 146:2435-2444. [PMID: 38251983 DOI: 10.1021/jacs.3c09838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
To increase information density and security in communication, Nature at times encodes signals in the time domain, for instance, Ca2+ ion signals. Double encoding in the time domain operates beyond this level of security because the data are encoded in two time-dependent output signals showing distinct periods, frequencies, and full duration half-maxima. To illustrate such a protocol, a three-component ensemble consisting of a double ion-selective luminophore with two distinct receptor sites, hexacyclen, and diaza-18-crown-6 ether is demonstrated to act as a logic AND gate with Ag+ and Ca2+ ions as inputs. The gate shows an unprecedented 2-fold time-encoded fluorescence output at 590 and 488 nm based on metal ion pulses with distinct periods when trichloroacetic acid is applied as chemical fuel.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| |
Collapse
|
3
|
Mondal D, Kundu S, Elramadi E, Rajasekaran VV, Schmittel M. Orthogonal Initiation of Molecular Motion Devices by Two Chemical Fuels. J Am Chem Soc 2023. [PMID: 38019966 DOI: 10.1021/jacs.3c08134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Herein, we demonstrate the selective dissipative and orthogonal actuation of two distinct molecular devices controlled by alternate fuel use. When the multicomponent ensemble of [2]rotaxane 1 and turnstile [Cu(2)(3)]+ was charged with AgBF4 as chemical fuel (Fuel 1) together with NEt3/PhCH2Br (cofuels), the transiently formed [Ag(1)]+ showed a stochastic shuttling of the silver macrocycle between two degenerate triazole stations on the thread (k298 = 1.2 × 105 s-1), whereas [Cu(2)(3)]+ was unperturbed. Instead, treatment of the mixture with PPh3 as an alternative fuel (Fuel 2) in the presence of oxidant 4 (cofuel) generated the complex [Cu(3)(PPh3)2]+ and transient thermal motion in rotor 2 (k298 = 4.9 × 104 s-1), whereas rotaxane 1 stayed dormant. Thus, two distinct chemical fuels selectively and orthogonally activated two distinct transient motion devices from a multicomponent mixture. In total, four interference-free dissipative cycles were demonstrated by using alternating fuel additions.
Collapse
Affiliation(s)
- Debabrata Mondal
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, School of Science and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, School of Science and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Emad Elramadi
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, School of Science and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Vishnu Verman Rajasekaran
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, School of Science and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, School of Science and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
4
|
Rajasekaran VV, Elramadi E, Valiyev I, Howlader P, Schmittel M. Fast and slow walking driven by chemical fuel. Chem Commun (Camb) 2023; 59:3886-3889. [PMID: 36916664 DOI: 10.1039/d3cc00357d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
We demonstrate the fast forward and slow backward motion of a biped on a tetrahedral track using chemical fuel, cooperative binding and kinetic selectivity. Walking of the biped is based on its dibenzyl amine feet that bind to zinc porphyrin units and, upon protonation, to dibenzo 24-crown-8 sites affording pseudorotaxane linkages.
Collapse
Affiliation(s)
- Vishnu Verman Rajasekaran
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068, Germany.
| | - Emad Elramadi
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068, Germany.
| | - Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068, Germany.
| | - Prodip Howlader
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068, Germany.
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068, Germany.
| |
Collapse
|
5
|
Mondal D, Kundu S, Elramadi E, Valiyev I, Schmittel M. Self-Healing of a Copper(I) [2]Rotaxane Shuttle Monitored by Fluorescence. Org Lett 2023; 25:933-937. [PMID: 36735754 DOI: 10.1021/acs.orglett.2c04237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We demonstrate self-healing of the shuttling dynamics of a molecular machine operating by negative feedback. When zinc(II) was added to the copper(I)-loaded [2]rotaxane shuttle [Cu(R)]+, copper(I) was replaced, thereby generating the static zinc(II)-loaded [2]rotaxane [Zn(R)]2+. Loss of the dynamics was accompanied by a fluorescence enhancement at λ = 364 nm. Notably, the released copper(I) ions catalyzed the formation of a bis-triazole ligand, which selectively captured zinc(II). As a result, the copper(I) was restored in the rotaxane, and the dynamic shuttling motion of [Cu(R)]+ was regained. The healing was conveniently followed by diagnostic fluorescence changes.
Collapse
Affiliation(s)
- Debabrata Mondal
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, University of Siegen, Adolf Reichwein Str. 2, D-57068 Siegen, Germany
| | - Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, University of Siegen, Adolf Reichwein Str. 2, D-57068 Siegen, Germany
| | - Emad Elramadi
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, University of Siegen, Adolf Reichwein Str. 2, D-57068 Siegen, Germany
| | - Isa Valiyev
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, University of Siegen, Adolf Reichwein Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, University of Siegen, Adolf Reichwein Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
6
|
Kundu S, Valiyev I, Mondal D, Rajasekaran VV, Goswami A, Schmittel M. Proton transfer network with luminescence display controls OFF/ON catalysis that generates a high-speed slider-on-deck. RSC Adv 2023; 13:5168-5171. [PMID: 36777932 PMCID: PMC9909384 DOI: 10.1039/d3ra00062a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
A three-component network for OFF/ON catalysis was built from a protonated nanoswitch and a luminophore. Its activation by addition of silver(i) triggered the proton-catalyzed formation of a biped and the assembly of a fast slider-on-deck (k 298 = 540 kHz).
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Vishnu Verman Rajasekaran
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Abir Goswami
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| |
Collapse
|
7
|
Benny R, Sahoo D, George A, De S. Recent Advances in Fuel-Driven Molecular Switches and Machines. ChemistryOpen 2022; 11:e202200128. [PMID: 36071446 PMCID: PMC9452441 DOI: 10.1002/open.202200128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
The molecular switches and machines arena has entered a new phase in which molecular machines operate under out-of-equilibrium conditions using appropriate fuel. Unlike the equilibrium version, the dissipative off-equilibrium machines necessitate only one stimulus input to complete each cycle and decrease chemical waste. Such a modus operandi would set significant steps towards mimicking the natural machines and may offer a platform for advancing new applications by providing temporal control. This review summarises the recent progress and blueprint of autonomous fuel-driven off-equilibrium molecular switches and machines.
Collapse
Affiliation(s)
- Renitta Benny
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| | - Diptiprava Sahoo
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| | - Ajith George
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| | - Soumen De
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| |
Collapse
|
8
|
Del Giudice D, Frateloreto F, Sappino C, Di Stefano S. Chemical Tools for the Temporal Control of Water Solution pH and Applications in Dissipative Systems. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniele Del Giudice
- University of Rome La Sapienza: Universita degli Studi di Roma La Sapienza Chemistry ITALY
| | - Federico Frateloreto
- University of Rome La Sapienza: Universita degli Studi di Roma La Sapienza Chemistry ITALY
| | - Carla Sappino
- University of Rome La Sapienza: Universita degli Studi di Roma La Sapienza Chemistry ITALY
| | - Stefano Di Stefano
- University of Rome La Sapienza: Universita degli Studi di Roma La Sapienza Chemistry Department Piazzale Aldo Moro 5 00185 Rome ITALY
| |
Collapse
|
9
|
Howlader P, Schmittel M. Heteroleptic metallosupramolecular aggregates /complexation for supramolecular catalysis. Beilstein J Org Chem 2022; 18:597-630. [PMID: 35673407 PMCID: PMC9152274 DOI: 10.3762/bjoc.18.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Supramolecular catalysis is reviewed with an eye on heteroleptic aggregates/complexation. Since most of the current metallosupramolecular catalytic systems are homoleptic in nature, the idea of breaking/reducing symmetry has ignited a vivid search for heteroleptic aggregates that are made up by different components. Their higher degree of functional diversity and structural heterogeneity allows, as demonstrated by Nature by the multicomponent ATP synthase motor, a more detailed and refined configuration of purposeful machinery. Furthermore, (metallo)supramolecular catalysis is shown to extend beyond the single "supramolecular unit" and to reach far into the field and concepts of systems chemistry and information science.
Collapse
Affiliation(s)
- Prodip Howlader
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|