1
|
Abstract
ConspectusPalladium catalysis, as one of the most important strategies in asymmetric synthesis, has continuously attracted the attention of organic chemists. With the development of chiral ligands, increasingly challenging reactions and substantial progress in asymmetric catalysis are being realized.Since 2014, we have focused on exploiting a series of sulfinamide phosphine ligands called "Sadphos," including Ming-Phos, Xu-Phos, Xiao-Phos, Xiang-Phos, TY-Phos, PC-Phos, GF-Phos, and WJ-Phos. These ligands can be easily prepared in two to four steps using commercial materials. These new types of ligands have shown remarkable performance in transition-metal-catalyzed reactions, especially in Pd-catalyzed transformations. X-ray diffraction analysis, mechanistic studies, and density functional theory calculations have revealed that Sadphos ligands can coordinate with the Pd0 and PdII species in the Pd0/P, Pd0/P,S, or PdII/P,O modes.This Account summarizes our recent efforts toward palladium-catalyzed enantioselective reactions using Sadphos ligands. These ligands were found to be privileged and very crucial to promote the reactions by increasing the reactivity and enantioselectivity. Ming-Phos is an effective ligand in Pd-catalyzed asymmetric coupling and intramolecular Heck reactions, providing highly enantioselective trisubstituted allenes, axially chiral anilides, gem-diarylmethine silanes, and disubstituted dihydroisoquinolinones. Incorporation of an electron-rich cyclohexyl group in the phosphine moiety afforded Xu-Phos, which showed a unique effect in a series of asymmetric transformations, including reductive Heck, dearomative Mizoroki-Heck, tandem Heck/Suzuki coupling, carboiodination, carboamination, and cross-coupling reactions. Using a similar strategy, our group synthesized more electron-rich TY-Phos and Xiang-Phos ligands bearing t-butyl and 1-adamantyl group at P atoms, respectively. Regarding stereoelectronic features, these two characteristic ligands were the best choice to satisfy the requirements of the palladium-catalyzed fluoroarylation of gem-difluoroalkenes, intermolecular α-arylation of aldehydes, carboetherification of alkenyl oximes, and carboheterofunctionalization of 2,3-dihydrofurans. Compared with the aforementioned Sadphos ligands, the attractive features of Xiao-Phos, including high nucleophilicity originating from the CH2PPh2 group and the ortho-substituent effect at the side of the aryl ring, are presumably responsible for its efficiency. The Pd/Xiao-Phos catalyst system shows good performance in a series of cross-coupling reactions of secondary phosphine oxides, affording P-stereogenic products bearing multiple types of molecular skeletons. The modification of the basic Sadphos backbone by introducing a xanthene skeleton motivated us to design and synthesize monophosphines, named PC-Phos and GF-Phos. PC-Phos is effective in various reactions, including arylation of sulfenate anions, denitrogenative cyclization of benzotriazoles, and dearomatization of indoles. The practicability of GF-Phos was validated in the Pd-catalyzed asymmetric three-component coupling of N-tosylhydrazones, aryl halides, and terminal alkynes, as well as in the cross-coupling of N-tosylhydrazones and vinyl iodides with pendent amines. In addition, ferrocene-derived WJ-Phos was employed in the palladium-catalyzed Suzuki-Miyaura cross-coupling reaction, affording axially chiral biaryl monophosphine oxides in excellent enantiomeric excesses.
Collapse
Affiliation(s)
- Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
2
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
3
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
4
|
Cheng L, Tang Q, Dai YM, Wang BQ, Hu P, Cao P, Song F. Rh-Catalyzed Intramolecular Hydroarylation of Unactivated Alkenes via C–C Bond Activation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Lang Cheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Qi Tang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Ya-Mei Dai
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Feijie Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| |
Collapse
|
5
|
Tu Y, Xu B, Wang Q, Dong H, Zhang ZM, Zhang J. Palladium/TY-Phos-Catalyzed Asymmetric Heck/Tsuji-Trost Reaction of o-Bromophenols with 1,3-Dienes. J Am Chem Soc 2023; 145:4378-4383. [PMID: 36795796 DOI: 10.1021/jacs.2c12752] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
2,3-Dihydrobenzofurans are crucial building blocks in the synthesis of natural products and pharmaceutical molecules. However, their asymmetric synthesis has been a long-standing formidable challenge so far. In this work, we developed a highly enantioselective Pd/TY-Phos-catalyzed Heck/Tsuji-Trost reaction of o-bromophenols with various 1,3-dienes, allowing expedient access to chiral substituted 2,3-dihydrobenzofurans. This reaction features excellent regio- and enantiocontrol, high functional group tolerance, and easy scalability. More importantly, the demonstration of this method as a highly valuable tool for the construction of optically pure natural products (R)-tremetone and fomannoxin is highlighted.
Collapse
Affiliation(s)
- Youshao Tu
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Bing Xu
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Qian Wang
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, P. R. China
| | - Honglin Dong
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, P. R. China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
6
|
Sapkota RR, Tak RK, Aryal V, Niroula D, Secosky NC, Dhungana RK, Giri R. Cu-Catalyzed Cyclization/Coupling of Alkenyl Aldimines with Arylzinc Reagents: Access to Indole-3-diarylmethanes. Org Lett 2022; 24:6213-6218. [PMID: 35969494 DOI: 10.1021/acs.orglett.2c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a Cu(II)-catalyzed cyclization/coupling of alkenyl aldimines with arylzinc reagents to create indole-3-diarylmethane derivatives (Sapkota et al. ChemRxiv 2022, DOI: 10.26434/chemrxiv-2022-d6qn). The current reaction provides a unified modular route from readily available starting materials to indole-3-diarylmethanes in which all three arene cores can be decorated with differential functional substitutions on demand. Since the cyclization/coupling of alkenyl aldimines is unknown to date, the current method widens the scope with regard to both the substrate and product diversity for this class of reaction.
Collapse
Affiliation(s)
- Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raj Kumar Tak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vivek Aryal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Doleshwar Niroula
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicholas C Secosky
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Roshan K Dhungana
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Yan H, Smith GS, Chen FE. Recent advances using cyclopropanols and cyclobutanols in ring-opening asymmetric synthesis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Pérez-Gómez M, Herrera-Ramírez P, Bautista D, Saura-Llamas I, García-López JA. Synthesis of Benzofused O- and N-Heterocycles through Cascade Carbopalladation/Cross-Alkylation of Alkynes Involving the C–C Cleavage of Cyclobutanols. Organometallics 2022; 41:649-658. [PMID: 35308581 PMCID: PMC8925021 DOI: 10.1021/acs.organomet.2c00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 11/30/2022]
Abstract
![]()
We report a Pd-catalyzed
route to heterocycles bearing a tetrasubstituted
alkene fragment. Our approach merges the intramolecular carbopalladation
of tethered alkynes with an alkylation step produced by the C–C
cleavage of cyclobutanol derivatives. An alkenyl-Pd(II) intermediate
has been isolated and characterized by X-ray diffraction studies.
Interestingly, the nature of the tethering alkynyl chain influences
the E/Z stereochemistry of the alkenyl
fragment in the functionalized heterocycles.
Collapse
Affiliation(s)
- Marta Pérez-Gómez
- Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E−30100 Murcia, Spain
| | - Piedad Herrera-Ramírez
- Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E−30100 Murcia, Spain
| | | | - Isabel Saura-Llamas
- Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E−30100 Murcia, Spain
| | - José-Antonio García-López
- Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E−30100 Murcia, Spain
| |
Collapse
|
9
|
Zhou PX, Yang X, Du X, Zhao S, Wang H, Tan X, Wang J, Liang YM. Pd-Catalyzed alkynyl aryl iodide cyclization/alkylation with cyclobutanols. Org Chem Front 2022. [DOI: 10.1039/d2qo00180b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed cis-selective carboalkylation of internal alkynes with cyclobutanols is reported, providing a useful and facile approach to alkyl-substituted olefins with moderate to good yields and excellent stereoselectivity.
Collapse
Affiliation(s)
- Ping-Xin Zhou
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaozhe Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xueyan Du
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shujie Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Han Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xinqiang Tan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jia Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, China
| |
Collapse
|
10
|
Zhou PX, Yang X, Du X, Zhao S, Wang H, Li X, Liu N, Tan X, Ren F, Liang YM. Palladium-catalyzed Heck cyclization/allylation with homoallyl alcohols via retro-allylation. Org Chem Front 2022. [DOI: 10.1039/d2qo00655c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed reaction of aryl iodide-tethered alkenes with homoallyl alcohols is reported, providing a convenient and efficient approach to C(sp3)–allylation products.
Collapse
Affiliation(s)
- Ping-Xin Zhou
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaozhe Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xueyan Du
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shujie Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Han Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xinguang Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ning Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xinqiang Tan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Feng Ren
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Immunity and Targeted Therapy for liver-intestinal Tumors, Xinxiang Medical University, Xinxiang, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Mao G, Meng C, Cheng F, Wu W, Gao YY, Li GW, Liu L. Palladium-Catalyzed Sequential Heck Coupling/C-C Bond Activation Approach to Oxindoles with All-Carbon-Quaternary Centers. Org Biomol Chem 2022; 20:1642-1646. [DOI: 10.1039/d1ob02440j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic construction of oxindoles bearing all-carbon-quaternary centers draws wide attentions from synthetic community. Herein, we report a Palladium-catalyzed sequential Heck coupling/C-C bond activation of aryl halide-tethered alkenes with benzocyclobutenols affording...
Collapse
|