1
|
Zhang F, Li Y, Zhou X, Zhao Q, Li X, Zhang FL, Wang YF, Zhou X. Quenching Rate Constants of Lewis Base-Boryl Radical by Substrates: a Laser Flash Photolysis Study. Chemistry 2025; 31:e202403949. [PMID: 39532687 DOI: 10.1002/chem.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
The advanced strategy using Lewis base-boryl radicals (LBRs) has recently been proposed for the addition of alkyl substituents to the full-carbon quaternary center of an organic molecule. However, as the rate-determining step in the whole route, reaction rate constants of LBRs with substrates are extremely lacking. In this paper, 4-dimethylaminopyridine (DMAP)-BH2⋅ was selected as a representative of LBRs, and its reactions with six monochloro-substituted substrates, including three methyl chlorobenzoates and three chlorinated acetanilides were studied in experiments and theoretical calculations. The bimolecular reaction rate constants, kq, were determined using laser flash photolysis approach. By comparing activation energies along the two addition pathways, we have clarified the rate-determining step as the attacking to carbonyl oxygen instead of chlorine atom. Furthermore, noncovalent interaction (NCI) analyses on these substrates indicate that weak interactions, such as hydrogen-bonding and van der Waals interactions, have significant influence on the reactivity of these substrates. Our study provides concrete clues to extend this synthetic strategy.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuanming Li
- Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xi Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qiang Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuelian Li
- Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Feng-Lian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yi-Feng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoguo Zhou
- Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 PMCID: PMC12056945 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and EngineeringYamaguchi University2-16-1 TokiwadaiUbeYamaguchi755-8611Japan
| |
Collapse
|
3
|
Zhang QB, Li F, Pan B, Yu L, Yue XG. Visible-Light-Mediated [2+2] Photocycloadditions of Alkynes. Chemistry 2024; 30:e202401501. [PMID: 38806409 DOI: 10.1002/chem.202401501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Visible-light-mediated [2+2] photocycloaddition reaction can be considered an ideal solution due to its green and sustainable properties, and is one of the most efficient methods to synthesize four-membered ring motifs. Although research on the [2+2] photocycloaddition of alkynes is challenging because of the diminished reactivity of alkynes, and the more significant ring strain of the products, remarkable achievements have been made in this field. In this article, we highlight the recent advances in visible-light-mediated [2+2] photocycloaddition reactions of alkynes, with focus on the reaction mechanism and the late-stage synthetic applications. Advances in obtaining cyclobutenes, azetines, and oxetene active intermediates continue to be breakthroughs in this fascinating field of research.
Collapse
Affiliation(s)
- Qing-Bao Zhang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Feng Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Bin Pan
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Lei Yu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Xiang-Guo Yue
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| |
Collapse
|
4
|
Wang Z, Zhu J, Wang M, Lu P. Palladium-Catalyzed Divergent Enantioselective Functionalization of Cyclobutenes. J Am Chem Soc 2024; 146:12691-12701. [PMID: 38676653 DOI: 10.1021/jacs.4c02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Aliphatic strained rings have been increasingly applied in medicinal chemistry due to their beneficial physicochemical and pharmacokinetic properties. However, the divergent synthesis of enantioenriched cyclobutane derivatives with various structural patterns continues to be a significant challenge. Here, we disclose a palladium-catalyzed enantioselective desymmetrization of cyclobutenes, resulting in a series of hydroarylation and 1,2- and 1,3-diarylation products via the interceptions of a common Heck intermediate. Mechanistic investigations provide valuable insights into understanding the catalytic mode of the palladium catalysts and the observed variations in the deuterium-responsive behavior during reactions. Furthermore, the synthetic utility is demonstrated in the syntheses of deuterated drug candidate belaperidone skeletons and pseudosymmetrical truxinic acid-type derivatives.
Collapse
Affiliation(s)
- Zhonggui Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, China
| | - Jie Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, China
| |
Collapse
|
5
|
Liao ZY, Gao F, Ye YH, Yu QH, Yang C, Luo QY, Du F, Pan B, Zhong WW, Liang W. Construction of cyclobutane-fused tetracyclic skeletons via substrate-dependent EnT-enabled dearomative [2+2] cycloaddition of benzofurans (benzothiophenes)/maleimides. Chem Commun (Camb) 2024; 60:4455-4458. [PMID: 38563643 DOI: 10.1039/d4cc00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, a novel and facile organic photosensitizer (thioxanthone)-mediated energy-transfer-enabled (EnT-enabled) dearomative [2+2] cycloaddition of aromatic heterocycles/maleimides for green synthesis of cyclobutane-fused polycyclic skeletons is reported. Mechanistic investigations revealed that different EnT pathways by triplet thioxanthone were initiated when different aromatic heterocycles participated in the reaction, giving the corresponding excited intermediates, which underwent the subsequent intermolecular [2+2] cycloaddition to access the desired highly functionalized cyclobutane-fused polycyclic skeletons.
Collapse
Affiliation(s)
- Zhi-Yu Liao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Fan Gao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Yu-Hang Ye
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Qian-Hui Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Cui Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Qing-Yu Luo
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Wen-Wu Zhong
- Department of Pharmacy, Chongqing Medical and Pharmaceutical College, Shapingba, Chongqing 401334, China.
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Hu X, Xu W, Liu Y, Guo H. Visible Light-Induced Diastereoselective Construction of Trifluoromethylated Cyclobutane Scaffolds through [2+2]-Photocycloaddition and Water-Assisted Hydrodebromination. J Org Chem 2023; 88:2521-2534. [PMID: 36701662 DOI: 10.1021/acs.joc.2c02976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A visible light-induced diastereoselective synthesis of trifluoromethylated cyclobutane derivatives is described, consisting of [2+2]-photocycloaddition and water-assisted hydrodebromination by one pot. Quinolinones, isoquinolinones, and coumarins are able to participate in this one-pot process with 1-bromo-1-trifluoromethylethene. In addition, stereodefined trisubstituted trifluoromethylated cyclobutane alcohols, carboxylic acids, and amines can be obtained in a straightforward manner through the ring opening of lactone or lactam without the loss of original high diastereoselectivity given by the water-tristrimethylsilylsilane coordination. The antineoplastic bioactivities of those compounds are also well studied, which exhibit great antineoplastic potential comparable to cisplatin. In the proposed mechanism, thioxanthone (TX) serves as a dual catalyst and a radical chain pathway may be involved in the hydrodebromination process.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Weibo Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China.,Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai 200032, P. R. China
| | - Yin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
7
|
Skolia E, Kokotos CG. Photochemical [2 + 2] Cycloaddition of Alkenes with Maleimides: Highlighting the Differences between N-Alkyl vs N-Aryl Maleimides. ACS ORGANIC & INORGANIC AU 2022; 3:96-103. [PMID: 37035280 PMCID: PMC10080724 DOI: 10.1021/acsorginorgau.2c00053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Throughout the last 15 years, there has been increased research interest in the use of light promoting organic transformations. [2 + 2] Cycloadditions are usually performed photochemically; however, literature precedent on the reaction between olefins and maleimides is limited to a handful of literature examples, focusing mainly on N-aliphatic maleimides or using metal catalysts for visible-light driven reactions of N-aromatic maleimides. Herein, we identify the differences in reactivity between N-alkyl and N-aryl maleimides. For our optimized protocols, in the case of N-alkyl maleimides, the reaction with alkenes proceeds under 370 nm irradiation in the absence of an external photocatalyst, leading to products in high yields. In the case of N-aryl maleimides, the reaction with olefins requires thioxanthone as the photosensitizer under 440 nm irradiation.
Collapse
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| |
Collapse
|
8
|
Zhao Q, Li B, Zhou X, Wang Z, Zhang FL, Li Y, Zhou X, Fu Y, Wang YF. Boryl Radicals Enabled a Three-Step Sequence to Assemble All-Carbon Quaternary Centers from Activated Trichloromethyl Groups. J Am Chem Soc 2022; 144:15275-15285. [PMID: 35950969 DOI: 10.1021/jacs.2c05798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The construction of diversely substituted all-carbon quaternary centers has been a longstanding challenge in organic synthesis. Methods that add three alkyl substituents to a simple C(sp3) atom rely heavily on lengthy multiple processes, which usually involve several preactivation steps. Here, we describe a straightforward three-step sequence that uses a range of readily accessible activated trichloromethyl groups as the carbon source, the three C-Cl bonds of which are selectively functionalized to introduce three alkyl chains. In each step, only a single C-Cl bond was cleaved with the choice of an appropriate Lewis base-boryl radical as the promoter. A vast range of diversely substituted all-carbon quaternary centers could be accessed directly from these activated CCl3 trichloromethyl groups or by simple derivatizations. The use of different alkene traps in each of the three steps enabled facile collections of a large library of products. The utility of this strategy was demonstrated by the synthesis of variants of two drug molecules, whose structures could be easily modulated by varying the alkene partner in each step. The results of kinetic and computational studies enabled the design of the three-step reaction and provided insights into the reaction mechanisms.
Collapse
Affiliation(s)
- Qiang Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Bin Li
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xi Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhao Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Feng-Lian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuanming Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yao Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yi-Feng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Liu X, Wang Z, Wang Q, Wang Y. Rhodium(II)‐Catalyzed C(sp
3
)−H Diamination of Arylcyclobutanes. Angew Chem Int Ed Engl 2022; 61:e202205493. [DOI: 10.1002/anie.202205493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xinyu Liu
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhifan Wang
- College of Chemistry Sichuan University Chengdu 610041 China
| | - Qiwei Wang
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- Department of Chemistry Xihua University Chengdu 610039 China
| | - Yuanhua Wang
- College of Chemistry Sichuan University Chengdu 610041 China
| |
Collapse
|
10
|
Liu SL, Ye C, Wang X. Recent advances in transition-metal-catalyzed directed C-H alkenylation with maleimides. Org Biomol Chem 2022; 20:4837-4845. [PMID: 35635524 DOI: 10.1039/d2ob00604a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transition-metal-catalyzed directed C-H alkenylation with maleimides has attracted much attention in recent years, as maleimide core moieties are present in various natural products and pharmaceuticals. In addition, these derivatives can be readily modified into biologically important compounds including succinimides, pyrrolidines and γ-lactams. The efficient chelation-assisted inert C-H bond activation strategy provides straightforward access to a wide array of structurally diverse molecules containing maleimide units. This review describes the major progress and mechanistic investigations on Heck-type reaction/cyclization of maleimides with organic molecules until early 2022.
Collapse
Affiliation(s)
- Shuang-Liang Liu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Kexue avenue 136, Zhengzhou, 450001, P.R. China.
| | - Changchun Ye
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Kexue avenue 136, Zhengzhou, 450001, P.R. China.
| | - Xiaoge Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Kexue avenue 136, Zhengzhou, 450001, P.R. China.
| |
Collapse
|
11
|
Liu X, Wang Z, Wang Q, Wang Y. Rhodium(II)‐Catalyzed C(sp
3
)−H Diamination of Arylcyclobutanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xinyu Liu
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhifan Wang
- College of Chemistry Sichuan University Chengdu 610041 China
| | - Qiwei Wang
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- Department of Chemistry Xihua University Chengdu 610039 China
| | - Yuanhua Wang
- College of Chemistry Sichuan University Chengdu 610041 China
| |
Collapse
|
12
|
Zhang FL, Li B, Houk KN, Wang YF. Application of the Spin-Center Shift in Organic Synthesis. JACS AU 2022; 2:1032-1042. [PMID: 35647602 PMCID: PMC9131482 DOI: 10.1021/jacsau.2c00051] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 05/09/2023]
Abstract
Spin-center shift (SCS) is a radical process involving 1,2-radical translocation along with a two-electron ionic movement, such as elimination of an adjacent leaving group. Such a process was initially observed in some important biochemical transformations, and the unique property has also attracted considerable interest in synthetic chemistry. Experimental, kinetic, as well as computational studies have been performed, and a series of useful radical transformations have been developed and applied in organic synthesis based on SCS processes in the last 20 years. This Perspective is an overview of radical transformations involving the SCS mechanism.
Collapse
Affiliation(s)
- Feng-Lian Zhang
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bin Li
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Yi-Feng Wang
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
He X, Ye K. Stepwise Construction of All-Carbon Quaternary Centers Starting from Activated Trichloromethyl Group in Three Steps. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|