1
|
Liu S, Zhao C, Pan M, Liao H, Liu Y, Zhang J, Rong L. Copper(I)-Catalyzed Radical Carbamylation/Cyclization of 2-Aryl- N-methacryloylindoles with Substituted Formamides to Assemble Amidated Indolo[2,1- a]isoquinolin-6(5 H)-ones. J Org Chem 2023; 88:16352-16364. [PMID: 37971731 DOI: 10.1021/acs.joc.3c01856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
An efficient synthesis of amidated indolo[2,1-a]isoquinolin-6(5H)-ones has been achieved via copper(I)-catalyzed radical carbamylation/cyclization of 2-aryl-N-methacryloylindoles with substituted formamides. In this reaction, an isoquinoline ring was constructed by carbamylation of a carbon-carbon double bond in 2-arylindoles. This strategy successfully introduces the substituted amide group into the indolo[2,1-a]isoquinoline skeleton and has advantages such as wide substituent scope, mild reaction conditions, high regioselectivity, and good to excellent yields.
Collapse
Affiliation(s)
- Shengjun Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Congcong Zhao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Mei Pan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Hailin Liao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Yun Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Jinpeng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221006, Jiangsu, PR China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| |
Collapse
|
2
|
Yadav I, Sankar M. Panchromatic and Perturbed Absorption Spectral Features and Multiredox Properties of Dicyanovinyl- and Dicyanobutadienyl-Appended Cobalt Corroles. Inorg Chem 2023. [PMID: 38010211 DOI: 10.1021/acs.inorgchem.3c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Four new β-functionalized π-extended cobalt corroles with one and two dicyanovinyl (DCV) or dicyanobutadienyl (DCBD) moieties at the 3- and 3,17-positions have been synthesized and characterized by various spectroscopic techniques. Interestingly, the synthesized DCV- and DCBD-appended cobalt corroles displayed panchromatic and near-infrared absorption in the range 300-1100 nm in CH2Cl2 and pyridine solvents. (MN)2-(Cor)Co and A2MN2-(Cor)Co exhibited 8-9 times enhancement in the molar absorptivity of the Q band compared to the parent corrole ((Cor)Co). The unique absorption spectral features of these β-functionalized cobalt corroles are splitting, broadening, and red-shifting in the Soret and Q bands. One DCV unit brings a 30-46 nm red shift, whereas one DCBD unit brings a 40-75 nm red shift in the Q band compared to the corresponding precursors. This is rare that the intensity of the longest Q band is greater than or equal to the Soret-like bands. These corrole derivatives exhibit UV-vis spectral features similar to those of chlorophyll a. A 220 mV positive shift per DCV group and 160 mV positive shift per DCBD group were observed in the first oxidation potentials compared to (Cor)Co in the desired direction for the utility of these cobalt complexes in electrocatalysis. DFT studies revealed that HOMO and LUMO were stabilized after appending DCV and DCBD groups on the corrole macrocycle and exhibited a "push-pull" behavior leading to promising material applications in nonlinear optics (NLO) and catalysis.
Collapse
Affiliation(s)
- Inderpal Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
3
|
Wang Y, Zhuang W, Wu S, Duan Z, Li S, Chen J, Zhou L, Zhou Y, Li C, Chen M. Aggregation-induced bioprobe for plasma membrane-specific imaging and photodynamic cancer cell ablation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122486. [PMID: 36801737 DOI: 10.1016/j.saa.2023.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Selective labelling of the plasma membrane (PM) by fluorescence imaging techniques enables an intuitive analysis of cell status together with dynamic changes, and therefore is of great value. We herein disclose a novel carbazole-based probe, CPPPy, that shows aggregation-induced emission (AIE) property and is observed to selectively accumulate at the PM of living cells. Benefiting from its good biocompatibility and PM-targeted specificity, CPPPy can light up the PM of cells by high-resolution imaging even at a low concentration of 200 nM. Simultaneously, CPPPy is capable of generating both singlet oxygen and free radical-dominated species upon visible light irradiation, which further induces irreversible growth inhibition and necrocytosis of tumor cells. This study thus provides new insight into the construction of multifunctional fluorescence probes with PM-specific bioimaging and photodynamic therapy.
Collapse
Affiliation(s)
- Yinchan Wang
- Core Facility of West China Hospital, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Sisi Wu
- Core Facility of West China Hospital, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China.
| | - Shufen Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Jingruo Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Linsen Zhou
- Institute of Materials, Chinese Academy of Engineering Physics, Jiangyou 621908, PR China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China.
| | - Chengming Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China.
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China; Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China.
| |
Collapse
|
4
|
Li Y, Geng L, Song Z, Zhang Z. A DFT study of NHC-catalyzed reactions between 2-bromo-2-enals and acylhydrazones: mechanisms, and chemo- and stereoselectivities. NEW J CHEM 2022. [DOI: 10.1039/d2nj01078j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The reaction mechanisms and origins of the chemo- and stereoselectivities of NHC-catalyzed [4 + 2] annulation of 2-bromo-2-enals and acylhydrazones.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P. R. China
| | - Lina Geng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P. R. China
| | - Zhiyi Song
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P. R. China
| |
Collapse
|