1
|
Ahrweiler E, Selmani A, Schoenebeck F. Base-Catalyzed Remote Hydrogermylation of Olefins. Angew Chem Int Ed Engl 2025; 64:e202503573. [PMID: 40080055 DOI: 10.1002/anie.202503573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Although remote functionalization has emerged as a powerful strategy for modifying unactivated sites that are traditionally challenging to functionalize, there has been no remote hydrogermylation known to date. This work reports the first remote hydrogermylation of alkenes, achieved through a rare base-catalyzed approach-completely free of added transition metal catalysts. The methodology is operationally simple, versatile, and capable of achieving up to 8-carbon chain walks, overcoming the previous two-carbon limit of base-mediated processes.
Collapse
Affiliation(s)
- Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
2
|
Sakamoto K, Nagashima Y, Kamino S, Uchiyama M. Nucleophilic Germylation of Stable π Bonds via Ge─Ge Bond Heterolysis. Angew Chem Int Ed Engl 2025:e202506106. [PMID: 40326001 DOI: 10.1002/anie.202506106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/07/2025]
Abstract
Organogermanes have recently attracted a great deal of attention as building blocks for the synthesis of bioactive products, drugs, and functional materials. Metallo-germyls were classically synthesized and employed for nucleophilic germylation to form C─Ge bonds. However, their syntheses require highly reactive organometal reagents, and the scope of germylations involving metallo-germyls is limited due to competition with kinetically favored side reactions. Here, we present a regio/stereo-convergent nucleophilic germylation of stable π bonds by germyl anion generated in situ via heterolytic cleavage of the Ge─Ge bond of digermane (Ge─Ge) in the presence of KOtBu. This methodology affords unprecedented reactivity, enabling multiple germylation of alkynes and internally selective germylation of alkenes. These reactions are operationally simple, have broad functional group tolerance, and afford densely functionalized aliphatic organogermanes, such as 1-alkyl-1-germylalkanes, 1,1-digermylalkanes, and 1,1,1-trigermylalkanes, without any catalyst.
Collapse
Affiliation(s)
- Kyoka Sakamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Yuki Nagashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Fusion Oriented Research for disruptive Science and Technology (FOREST), Japan Science and Technology Agency (JST), 4-1-8 Kawaguchi, Saitama, 332-0012, Japan
| | - Shinichiro Kamino
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Iimuro H, Ishigaki S, Araujo Dias AJ, Inoue T, Tanaka K, Nagashima Y. Photocatalytic Generation of Germyl Radicals from Digermanes Enabling the Hydro/Deuteriogermylation of Alkenes. J Org Chem 2024; 89:15623-15629. [PMID: 39382946 DOI: 10.1021/acs.joc.4c01693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
We have developed a visible-light-induced method to photolyze digermanes through single-electron oxidation using a photocatalyst, in contrast to direct excitation, to generate germyl radicals and achieve the hydro/deuteriogermylation of alkenes. This protocol allows the previously elusive incorporation of the small trimethylgermyl group and deuterium, metabolically stable bioisosteres of tert-butyl and hydrogen, respectively, making this approach attractive in not only organic synthesis but also medicinal chemistry.
Collapse
Affiliation(s)
- Haruka Iimuro
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shiho Ishigaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Antônio Junio Araujo Dias
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tomonori Inoue
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Bajya KR, Maurya SK, Selvakumar S. Organophotocatalytic Regioselective Silylation/Germylation and Cascade Cyclization of N-Alkenyl α-CF 3 Acrylamides: Access to Densely Functionalized 4-Pyrrolin-2-ones. Org Lett 2024; 26:9269-9275. [PMID: 39432672 DOI: 10.1021/acs.orglett.4c03427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
We report an organophotoredox-catalyzed silylation/germylation cascade cyclization of N-alkenyl α-CF3 acrylamides under mild conditions. N-Aminopyridinium salts act as hydrogen atom transfer reagents under photoredox catalysis in the generation of silyl and germyl radicals. An array of silyl- and germyl-substituted 3-CF3-4-pyrrolin-2-one derivatives were constructed in a shorter reaction time with low catalyst loading in good to excellent yields at room temperature. Importantly, this protocol is amenable to the late-stage diversification of bioactive molecules, as well as to large-scale synthesis.
Collapse
Affiliation(s)
- Kalu Ram Bajya
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Shivam Kumar Maurya
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Sermadurai Selvakumar
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
5
|
Schoetz MD, Deckers K, Singh G, Ahrweiler E, Hoeppner A, Schoenebeck F. Electrochemistry-Enabled C-Heteroatom Bond Formation of Alkyl Germanes. J Am Chem Soc 2024; 146:21257-21263. [PMID: 39058901 DOI: 10.1021/jacs.4c08008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Because of their robustness and orthogonal reactivity features, alkyl germanes bear significant potential as functional handles for the construction of C(sp3)-rich scaffolds, especially in the context of modular synthetic approaches. However, to date, only radical-based reactivity has been accessible from these functional handles, which limits the types of possible decorations. Here, we describe the first general C(sp3)-heteroatom bond formation of alkyl germanes (-GeEt3) by leveraging electrochemistry to unlock polar reactivity. This approach allowed us to couple C(sp3)-GeEt3 with a variety of nucleophiles to construct ethers, esters, amines, amides, sulfonamides, sulfides, as well as C-P, C-F, and C-C bonds. The compatibility of the electrochemical approach with a modular synthetic strategy of a C1 motif was also showcased, involving the sequential functionalization of Cl, Bpin, and ultimately GeEt3 via electrochemistry.
Collapse
Affiliation(s)
- Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Kristina Deckers
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Gurdeep Singh
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Annika Hoeppner
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | | |
Collapse
|
6
|
Yoshizawa K, Li BX, Matsuyama T, Wang C, Uchiyama M. Visible-Light-Driven Germyl Radical Generation via EDA-Catalyzed ET-HAT Process. Chemistry 2024; 30:e202401546. [PMID: 38716768 DOI: 10.1002/chem.202401546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 06/28/2024]
Abstract
We have established a facile and efficient protocol for the generation of germyl radicals by employing photo-excited electron transfer (ET) in an electron donor-acceptor (EDA) complex to drive hydrogen-atom transfer (HAT) from germyl hydride (R3GeH). Using a catalytic amount of EDA complex of commercially available thiol and benzophenone derivatives, the ET-HAT cycle smoothly proceeds simply upon blue-light irradiation without any transition metal or photocatalyst. This protocol also affords silyl radical from silyl hydride.
Collapse
Affiliation(s)
- Kaito Yoshizawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Bi-Xiao Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taro Matsuyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Chao Wang
- Faculty of Pharmaceutical Sciences, Institute of Medicinal, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa-shi, Ishikawa, 920-1192, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano, 380-8553, Japan
| |
Collapse
|
7
|
Qiu Z, Deng H, Neumann CN. Site-Isolated Rhodium(II) Metalloradicals Catalyze Olefin Hydrofunctionalization. Angew Chem Int Ed Engl 2024; 63:e202401375. [PMID: 38314637 DOI: 10.1002/anie.202401375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Rh(II) porphyrin complexes display pronounced metal-centered radical character and the ability to activate small molecules under mild conditions, but catalysis with Rh(II) porphyrins is extremely rare. In addition to facile dimerization, Rh(II) porphyrins readily engage in kinetically and thermodynamically facile reactions involving two Rh(II) centers to generate stable Rh(III)-X intermediates that obstruct turnover in thermal catalysis. Here we report site isolation of Rh(II) metalloradicals in a MOF host, which not only protects Rh(II) metalloradicals against dimerization, but also allows them to participate in thermal catalysis. Access to PCN-224 or PCN-222 in which the porphyrin linkers are fully metalated by Rh(II) in the absence of any accompanying Rh(0) nanoparticles was achieved via the first direct MOF synthesis with a linker containing a transition-metal alkyl moiety, followed by Rh(III)-C bond photolysis.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Hao Deng
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Ahrweiler E, Schoetz MD, Singh G, Bindschaedler QP, Sorroche A, Schoenebeck F. Triply Selective & Sequential Diversification at C sp 3: Expansion of Alkyl Germane Reactivity for C-C & C-Heteroatom Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202401545. [PMID: 38386517 DOI: 10.1002/anie.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
We report the triply selective and sequential diversification of a single Csp 3 carbon carrying Cl, Bpin and GeEt3 for the modular and programmable construction of sp3-rich molecules. Various functionalizations of Csp 3-Cl and Csp 3-BPin (e.g. alkylation, arylation, homologation, amination, hydroxylation) were tolerated by the Csp 3-GeEt3 group. Moreover, the methodological repertoire of alkyl germane functionalization was significantly expanded beyond the hitherto known Giese addition and arylation to alkynylation, alkenylation, cyanation, halogenation, azidation, C-S bond formation as well as the first demonstration of stereo-selective functionalization of a Csp 3-[Ge] bond.
Collapse
Affiliation(s)
- Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Gurdeep Singh
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Quentin P Bindschaedler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Alba Sorroche
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| |
Collapse
|
9
|
Rogova T, Ahrweiler E, Schoetz MD, Schoenebeck F. Recent Developments with Organogermanes: their Preparation and Application in Synthesis and Catalysis. Angew Chem Int Ed Engl 2024; 63:e202314709. [PMID: 37899306 DOI: 10.1002/anie.202314709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 10/31/2023]
Abstract
Within the sphere of traditional Pd0 /PdII cross coupling reactions, organogermanes have been historically outperformed both in terms of scope and reactivity by more conventional transmetalating reagents. Subsequently, this class of compounds has been largely underutilized as a coupling partner in bond-forming strategies. Most recent studies, however, have shown that alternative modes of activation of these notoriously robust building blocks transform organogermanes into the most reactive site of the molecule-capable of outcompeting other functional groups (such as boronic acids, esters and silanes) for both C-C and C-heteroatom bond formation. As a result, over the past few years, the literature has increasingly featured methodologies that explore the potential of organogermanes as chemoselective and orthogonal coupling partners. Herein we highlight some of these recent advances in the field of organogermane chemistry both with respect to their synthesis and applications in synthetic and catalytic transformations.
Collapse
Affiliation(s)
- Tatiana Rogova
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
10
|
Gu R, Feng X, Bao M, Zhang X. Modular access to alkylgermanes via reductive germylative alkylation of activated olefins under nickel catalysis. Nat Commun 2023; 14:7669. [PMID: 37996494 PMCID: PMC10667229 DOI: 10.1038/s41467-023-43561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Carbon-introducing difunctionalization of C-C double bonds enabled by transition-metal catalysis is one of most straightforward and efficient strategies to construct C-C and C-X bonds concurrently from readily available feedstocks towards structurally diverse molecules in one step; however, analogous difunctionalization for introducing germanium group and other functionalities remains elusive. Herein, we describe a nickel-catalyzed germylative alkylation of activated olefins with easily accessible primary, secondary and tertiary alkyl bromides and chlorogermanes as the electrophiles to form C-Ge and C-Calkyl bonds simultaneously. This method provides a modular and facile approach for the synthesis of a broad range of alkylgermanes with good functional group compatibility, and can be further applied to the late-stage modification of natural products and pharmaceuticals, as well as ligation of drug fragments. More importantly, this platform enables the expedient synthesis of germanium substituted ospemifene-Ge-OH, which shows improved properties compared to ospemifene in the treatment of breast cancer cells, demonstrating high potential of our protocol in drug development.
Collapse
Affiliation(s)
- Rui Gu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.
| | - Xuan Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China.
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.
| |
Collapse
|
11
|
Xiong J, Yan M, Jin L, Song W, Xiao L, Xu D, Zhai C, Stephan DW, Guo J. B(C 6F 5) 3-catalyzed hydrogermylation of enones: a facile route to germacycles. Org Biomol Chem 2023; 21:8098-8101. [PMID: 37800180 DOI: 10.1039/d3ob01402a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Organogermacycles are important skeletons for medicinal chemistry and materials. Herein, we reported a B(C6F5)3 mediated domino hydrogermylation reaction of enones with dihydrogermanes, affording 21 variants of organogermacycle compounds. These germacyclic compounds were obtained in good to excellent yields (up to 99% yield) under mild reaction conditions.
Collapse
Affiliation(s)
- Jiangkun Xiong
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Maying Yan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Lvnan Jin
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Weihong Song
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Lei Xiao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Dong Xu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
- Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada.
| | - Jing Guo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| |
Collapse
|
12
|
Meger FS, Murphy JA. Recent Advances in C-H Functionalisation through Indirect Hydrogen Atom Transfer. Molecules 2023; 28:6127. [PMID: 37630379 PMCID: PMC10459052 DOI: 10.3390/molecules28166127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The functionalisation of C-H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C-H substrates. Classic reactions, including the Barton nitrite ester reaction and Hofmann-Löffler-Freytag reaction, among others, provided early examples of HAT. However, recent developments in photoredox catalysis and electrochemistry have made HAT a powerful synthetic tool capable of introducing a wide range of functional groups into C-H bonds. Moreover, greater mechanistic insights into HAT have stimulated the development of increasingly site-selective protocols. Site-selectivity can be achieved through the tuning of electron density at certain C-H bonds using additives, a judicious choice of HAT reagent, and a solvent system. Herein, we describe the latest methods for functionalizing C-H/Si-H/Ge-H bonds using indirect HAT between 2018-2023, as well as a critical discussion of new HAT reagents, mechanistic aspects, substrate scopes, and background contexts of the protocols.
Collapse
Affiliation(s)
- Filip S. Meger
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avinguda dels Països Catalans, 43007 Tarragona, Catalonia, Spain
| | - John A. Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
13
|
Li BX, Ishida H, Wang C, Uchiyama M. Visible-Light-Driven Silyl or Germyl Radical Generation via Si-C or Ge-C Bond Homolysis. Org Lett 2023; 25:1765-1770. [PMID: 36883960 DOI: 10.1021/acs.orglett.3c00503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
We report a simple, rapid, and selective protocol for visible-light-driven generation of silyl radicals through photoredox-induced Si-C bond homolysis. Irradiating 3-silyl-1,4-cyclohexadienes with blue light in the presence of a commercially available photocatalyst smoothly generated silyl radicals bearing various substituents within 1 h, and these radicals were trapped by a broad range of alkenes to afford products in good yields. This process is also available for efficient generation of germyl radicals.
Collapse
Affiliation(s)
- Bi-Xiao Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Ishida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chao Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553, Japan
| |
Collapse
|
14
|
Kaithal A, Sasmal HS, Dutta S, Schäfer F, Schlichter L, Glorius F. cis-Selective Hydrogenation of Aryl Germanes: A Direct Approach to Access Saturated Carbo- and Heterocyclic Germanes. J Am Chem Soc 2023; 145:4109-4118. [PMID: 36781169 PMCID: PMC9951224 DOI: 10.1021/jacs.2c12062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 02/15/2023]
Abstract
A catalytic approach of synthesizing the cis-selective saturated carbo- and heterocyclic germanium compounds (3D framework) is reported via the hydrogenation of readily accessible aromatic germanes (2D framework). Among the numerous catalysts tested, Nishimura's catalyst (Rh2O3/PtO2·H2O) exhibited the best hydrogenation reactivity with an isolated yield of up to 96%. A broad range of substrates including the synthesis of unprecedented saturated heterocyclic germanes was explored. This selective hydrogenation strategy could tolerate several functional groups such as -CF3, -OR, -F, -Bpin, and -SiR3 groups. The synthesized products demonstrated the applications in coupling reactions including the newly developed strategy of aza-Giese-type addition reaction (C-N bond formation) from the saturated cyclic germane product. These versatile motifs can have a substantial value in organic synthesis and medicinal chemistry as they show orthogonal reactivity in coupling reactions while competing with other coupling partners such as boranes or silanes, acquiring a three-dimensional structure with high stability and robustness.
Collapse
Affiliation(s)
- Akash Kaithal
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Himadri Sekhar Sasmal
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Felix Schäfer
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Lisa Schlichter
- Westfälische
Wilhelms-Universität Münster, Center for Soft Nanoscience
(SoN) and Organisch-Chemisches Institut, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Frank Glorius
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
15
|
Bloux H, Dahiya A, Hébert A, Fabis F, Schoenebeck F, Cailly T. Base-Mediated Radio-Iodination of Arenes by Using Organosilane and Organogermane as Radiolabelling Precursors. Chemistry 2023; 29:e202203366. [PMID: 36607172 DOI: 10.1002/chem.202203366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
The radio-iodination of arenes is investigated from organosilane and organogermane precursors using ipso-electrophilic halogenation (IEH). Discovery of a mild base mediated process allows radio-iodination in HFIP (1,1,1,3,3,3-hexafluoro-2-propanol) of either aryl silane or germane, with germanes being more reactive. Clinical potential of arylgermanes as radio-iodination precursors is demonstrated through the labelling of [125 I]IMTO (iodometomidate) and [125 I]MIBG (meta-iodobenzylguanidine) thus offering an alternative to radio-iododestannylation processes using non-toxic precursors.
Collapse
Affiliation(s)
- Hugo Bloux
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Alexandra Hébert
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Frédéric Fabis
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Cailly
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France.,IMOGERE, Normandie Univ, UNICAEN, 14000, Caen, France.,Department of Nuclear Medicine, CHU Côte de Nacre, 14000, Caen, France.,Institut Blood and Brain @Caen-Normandie (BB@C), Boulevard Henri Becquerel, 14074, Caen, France
| |
Collapse
|
16
|
Lin W, You L, Yuan W, He C. Cu-Catalyzed Enantioselective Hydrogermylation: Asymmetric Synthesis of Unnatural β-Germyl α-Amino Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Weidong Lin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lijun You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
17
|
Selmani A, Schoetz MD, Queen AE, Schoenebeck F. Modularity in the C sp3 Space─Alkyl Germanes as Orthogonal Molecular Handles for Chemoselective Diversification. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Markus D. Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Adele E. Queen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
18
|
Dahiya A, Schoenebeck F. Direct C-H Dehydrogenative Germylation of Terminal Alkynes with Hydrogermanes. Org Lett 2022; 24:2728-2732. [PMID: 35364815 DOI: 10.1021/acs.orglett.2c00840] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A direct C(sp)-H germylation of terminal alkynes with triethyl germanium hydride is reported. The method is operationally simple and makes use of B(C6F5)3 catalysis in combination with 2,6-lutidine as an organic base. Exclusive selectivity for dehydrogenative germylation of the alkyne over the competing hydrogermylation is observed.
Collapse
Affiliation(s)
- Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
19
|
Abstract
The concurrent incorporation of a germyl fragment and another functional group (beyond the hydrogen atom) across the C═C double bond is a highly appealing yet challenging task. Herein we demonstrate the efficient germyl peroxidation of alkenes with germanium hydrides and tert-butyl hydroperoxide via a copper-catalyzed three-component radical relay strategy. This protocol exhibits excellent functional group tolerance and exquisite chemo- and regioselectivity under mild conditions and represents a rare example of constructing synthetically challenging metal-embedded organic peroxides.
Collapse
Affiliation(s)
- Yani Luo
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Boxia Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
20
|
Guo P, Pang X, Wang K, Su PF, Pan QQ, Han GY, Shen Q, Zhao ZZ, Zhang W, Shu XZ. Nickel-Catalyzed Reductive Csp 3-Ge Coupling of Alkyl Bromides with Chlorogermanes. Org Lett 2022; 24:1802-1806. [PMID: 35209712 DOI: 10.1021/acs.orglett.2c00207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reductive cross-coupling provides facile access to organogermanes, but it remains largely unexplored. Herein we report a nickel-catalyzed reductive Csp3-Ge coupling of alkyl bromides with chlorogermanes. This work has established a new method for producing alkylgermanes. The reaction proceeds under very mild conditions and tolerates various functionalities including ether, alcohol, alkene, nitrile, amine, ester, phosphonates, amides, ketone, and aldehyde. The application of this method to the modification of bioactive molecules is demonstrated.
Collapse
Affiliation(s)
- Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China.,School of Life Science, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Ke Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Pei-Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qiu-Quan Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Guan-Yu Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qian Shen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Wenhua Zhang
- School of Life Science, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
21
|
Xu Q, Wei L, Zhang Z, Xiao B. Copper Promoted Synthesis of Tetraalkylgermanes from Germanium Electrophiles and Alkyl Bromides ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Katir N, El Haskouri J, Amoros P, El Kadib A. Cooperative assembly of redistributed arylgermanium-bearing alkoxysilanes in a mesostructured siloxane network. NEW J CHEM 2022. [DOI: 10.1039/d2nj02868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three redistributed arylgermanium-bearing mono-, bis- and tris-triethoxysilyl arms were designed, cocondensed with TEOS to access SBA-15-type materials and embedded in chitosan to prepare functional bioplastics.
Collapse
Affiliation(s)
- Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| | - Jamal El Haskouri
- Instituto de Ciència de los Materials de la Universidad de Valencia, Calle catedratico José Beltran, 2 CP 46980 Paterna Valencia, Spain
| | - Pedro Amoros
- Instituto de Ciència de los Materials de la Universidad de Valencia, Calle catedratico José Beltran, 2 CP 46980 Paterna Valencia, Spain
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| |
Collapse
|