1
|
Liu D, You H, Zhang S, Pan J, Dong W, Li W. Cu-Catalyzed Synthesis of Symmetric Diarylamines from Organoboronic Acids Using NaNO 2 as the Amino Source. J Org Chem 2025; 90:4090-4098. [PMID: 40052793 DOI: 10.1021/acs.joc.5c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A copper-catalyzed novel synthesis of symmetric diarylamines was achieved from aryl boronic acids and NaNO2. This protocol employs aryl boronic acids as the commercially available arylation reagents and sodium nitrite (NaNO2) as the cheap, stable, and solid amino source. Under a simple ligand- and base-free copper catalytic system (CuCl as the sole catalyst), a wide range of symmetric diarylamines could be obtained in moderate to good yields. Notably, the use of Na15NO2 could produce 15N-labeled diarylamines, which would otherwise be difficult to prepare by the known methods.
Collapse
Affiliation(s)
- Daming Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Hui You
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shuo Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Junyu Pan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wuheng Dong
- Medicine Center, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, P. R. China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
2
|
Hong P, Wang L, Zhu X, Huang M, Wan Y. Copper-Catalyzed One-Pot Protocol for Reductive N-Arylation of Nitroarenes with (Hetero)aryl Chlorides in Water. Org Lett 2024; 26:10769-10773. [PMID: 39651935 DOI: 10.1021/acs.orglett.4c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A novel protocol for the Cu-catalyzed reductive N-arylation of nitroarenes with (hetero)aryl chlorides in water has been realized. Combining N-(9H-carbazol-9-yl)-6-hydroxypicolinamide (L2) with oxalohydrazide is vital to realize the method at 90 °C with a loading of 5 mol % of Cu2O/L2. Various nitroarenes and aryl chlorides have been successfully coupled in good to excellent isolated yields. Further, two diarylamine-containing key intermediates, 3f and 4u, have been smoothly synthesized on a gram scale using this method.
Collapse
Affiliation(s)
- Peng Hong
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Lifang Wang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Xinhai Zhu
- Instrument Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Manna Huang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Yiqian Wan
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
3
|
Chen PH, Hsu SJ, Chen CC, Fu JC, Hou DR. Synthesis of Diarylamines via Nitrosonium-Initiated C-N Bond Formation. J Org Chem 2024; 89:10316-10326. [PMID: 38950197 PMCID: PMC11267615 DOI: 10.1021/acs.joc.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Electron-rich diarylamines, exemplified by anisole-derived amines, play pivotal roles in process chemistry, pharmaceuticals, and materials. In this study, homo-diarylamines were synthesized directly from the C-H activation of electron-rich arenes by sodium nitrate/trifluoroacetic acid and the successive treatment of iron powder. Mechanistic investigations reveal that nitrosoarene serves as the reaction intermediate, and the formation of the second C-N bond between the resulting nitrosoarene and electron-rich arene is catalyzed by the nitrosonium ion (NO+). Thus, hetero-diarylamines were synthesized using preformed nitrosoarenes and various electron-rich arenes. This reaction complements a range of cross-coupling reactions catalyzed by transition metal catalysts.
Collapse
Affiliation(s)
| | | | - Cheng-Chun Chen
- Department of Chemistry, National Central University, 300 Jhong-Da Rd., Jhong-Li, Taoyuan 320317, Taiwan
| | - Jui-Chen Fu
- Department of Chemistry, National Central University, 300 Jhong-Da Rd., Jhong-Li, Taoyuan 320317, Taiwan
| | - Duen-Ren Hou
- Department of Chemistry, National Central University, 300 Jhong-Da Rd., Jhong-Li, Taoyuan 320317, Taiwan
| |
Collapse
|
4
|
Noten EA, Ng CH, Wolesensky RM, Stephenson CRJ. A general alkene aminoarylation enabled by N-centred radical reactivity of sulfinamides. Nat Chem 2024; 16:599-606. [PMID: 38228850 DOI: 10.1038/s41557-023-01404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
Arylethylamines are popular structural elements in bioactive molecules but are often made through a linear series of synthetic steps. A modular protocol to assemble arylethylamines from alkenes in one step would represent a useful advance in discovery chemistry, though current limitations preclude a generally applicable method. In this work we disclose an aminoarylation of alkenes using aryl sulfinamide reagents as bifunctional amine and arene donors. This reaction features excellent regioselectivity and diastereoselectivity on a variety of activated and unactivated substrates. Using a weakly oxidizing photocatalyst, a nitrogen radical is generated under mild conditions and adds to an alkene to form a new C-N bond. A desulfinylative aryl migration event known as a Smiles-Truce rearrangement follows to form a new C-C bond. In this manner, arylethylamines can be rapidly assembled from abundant alkene feedstocks. Moreover, chiral information from the sulfinamide can be transferred via rearrangement to a new carbon stereocentre in the product, thus advancing the development of traceless asymmetric alkene difunctionalization.
Collapse
Affiliation(s)
- Efrey A Noten
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Cody H Ng
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
5
|
Karpova L, Daniel M, Kancherla R, Muralirajan K, Maity B, Rueping M. Excited-State Nickel-Catalyzed Amination of Aryl Bromides: Synthesis of Diphenylamines and Primary Anilines. Org Lett 2024; 26:1657-1661. [PMID: 38381879 DOI: 10.1021/acs.orglett.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Excited-state nickel-catalyzed C-N cross-coupling of aryl bromides with sodium azide enables the synthesis of diarylamines and primary anilines under mild reaction conditions. The oxidative addition of electron-rich aryl bromides with low-valent Ni under the photochemical conditions is endothermic. Herein, we demonstrate a light-mediated nickel-catalyzed reaction of electronically rich aryl bromides that yields diarylamines, while the reaction with electron-deficient aryl bromides gives access to anilines at room temperature.
Collapse
Affiliation(s)
- Lidia Karpova
- Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Matěj Daniel
- Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rajesh Kancherla
- Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bholanath Maity
- Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Sephton T, Large JM, Butterworth S, Greaney MF. Synthesis of Functionalized Pyrrolidinone Scaffolds via Smiles-Truce Cascade. Org Lett 2023; 25:6736-6740. [PMID: 37668613 PMCID: PMC10510726 DOI: 10.1021/acs.orglett.3c02559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 09/06/2023]
Abstract
Arylsulfonamides have been found to react with cyclopropane diesters under simple base treatment to give α-arylated pyrrolidinones. This one-pot process comprises three steps: nucleophilic ring-opening of the cyclopropane, reaction of the resulting enolate in a Smiles-Truce aryl transfer, and lactam formation. The reaction represents a new, operationally simple approach to biologically active pyrrolidinones and expands Smiles-Truce arylation methods to encompass sp3 electrophilic centers in cascade processes.
Collapse
Affiliation(s)
- Thomas Sephton
- School
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Jonathan M. Large
- Accelerator
Building, Open Innovation Campus, LifeArc, Stevenage SG1 2FX, U.K.
| | - Sam Butterworth
- Division
of Pharmacy and Optometry, School of Health Sciences, Manchester Academic
Health Sciences Centre, University of Manchester, Manchester M13 9PL, U.K.
| | | |
Collapse
|
7
|
Swaby C, Taylor A, Greaney MF. An NHC-Catalyzed Desulfonylative Smiles Rearrangement of Pyrrole and Indole Carboxaldehydes. J Org Chem 2023; 88:12821-12825. [PMID: 37589318 PMCID: PMC10476196 DOI: 10.1021/acs.joc.3c01089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/18/2023]
Abstract
The use of catalysis methods to enable Smiles rearrangement opens up new substrate classes for arylation under mild conditions. Here, we describe an N-heterocyclic carbene (NHC) catalysis system that accesses indole and pyrrole aldehyde substrates in a desulfonylative Smiles process. The reaction proceeds under mild, transition-metal-free conditions and captures acyl anion reactivity for the synthesis of a diverse array of 2-aroyl indoles and pyrroles from readily available sulfonamide starting materials.
Collapse
Affiliation(s)
| | | | - Michael F. Greaney
- Dept. of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
| |
Collapse
|
8
|
Simon CM, Robertson KN, DeRoy PL, Yadav AA, Johnson ER, Stradiotto M. Nickel-Catalyzed N-Arylation of Sulfinamides: A Comparative Study versus Analogous Sulfonamide Cross-Couplings. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Connor M. Simon
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | | | - Patrick L. DeRoy
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Arun A. Yadav
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
9
|
Lv CJ. Synthesis and crystal structure of ethyl 4-((4-iodobenzyl)amino)benzoate, C 16H 16INO 2. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C16H16INO2, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 5.7004(2) Å, b = 6.8909(3) Å, c = 19.6509(8) Å, α = 100.035(4)°, β = 94.465(3)°, γ = 99.447(4)°, V = 745.27(5) Å3, Z = 2, R
gt
(F) = 0.0321, wR
ref
(F
2) = 0.0595, T = 100.15 K.
Collapse
Affiliation(s)
- Chun-Jie Lv
- Food and Pharmacy College, XuChang University , XuChang 461002 , Henan Province , P. R. China
| |
Collapse
|
10
|
Murillo F, Quintal A, Dzib E, Zárate X, Fernández‐Herrera MA, Merino G. Revisiting the Formation Mechanism of Diarylamines via Smiles Rearrangement. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fernando Murillo
- Departamento de Física Aplicada Centro de Investigación y de Estudios Avanzados Mérida Yucatán México
| | - Alan Quintal
- Departamento de Física Aplicada Centro de Investigación y de Estudios Avanzados Mérida Yucatán México
| | - Eugenia Dzib
- Departamento de Física Aplicada Centro de Investigación y de Estudios Avanzados Mérida Yucatán México
| | - Ximena Zárate
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile Santiago Chile
| | | | - Gabriel Merino
- Departamento de Física Aplicada Centro de Investigación y de Estudios Avanzados Mérida Yucatán México
| |
Collapse
|
11
|
Sirakanyan SN, Spinelli D, Geronikaki A, Zuppiroli L, Zuppiroli R, Kartsev VG, Hakobyan EK, Yegoryan HA, Hovakimyan AA. Synthesis of 1-Amino-3-oxo-2,7-naphthyridines via Smiles Rearrangement: A New Approach in the Field of Chemistry of Heterocyclic Compounds. Int J Mol Sci 2022; 23:ijms23115904. [PMID: 35682584 PMCID: PMC9179986 DOI: 10.3390/ijms23115904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
In this paper we describe an efficient method for the synthesis of new heterocyclic systems: furo[2,3-c]-2,7-naphthyridines 6, as well as a new method for the preparation of 1,3-diamino-2,7-naphthyridines 11. For the first time, a Smiles rearrangement was carried out in the 2,7-naphthyridine series, thus gaining the opportunity to synthesize 1-amino-3-oxo-2,7-naphthyridines 4, which are the starting compounds for obtaining furo[2,3-c]-2,7-naphthyridines. The cyclization of alkoxyacetamides 9 proceeds via two different processes: the expected formation of furo[2,3-c]-2,7-naphthyridines 10 and the ‘unexpected’ formation of 1,3-diamino-2,7-naphthyridines 11 (via a Smiles type rearrangement).
Collapse
Affiliation(s)
- Samvel N. Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.K.H.); (H.A.Y.); (A.A.H.)
- Correspondence: (S.N.S.); (D.S.); Tel.: +374-91321599 (S.N.S.); +39-3487733265 (D.S.)
| | - Domenico Spinelli
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum-Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
- Correspondence: (S.N.S.); (D.S.); Tel.: +374-91321599 (S.N.S.); +39-3487733265 (D.S.)
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Luca Zuppiroli
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (L.Z.); (R.Z.)
| | - Riccardo Zuppiroli
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (L.Z.); (R.Z.)
| | | | - Elmira K. Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.K.H.); (H.A.Y.); (A.A.H.)
| | - Hasmik A. Yegoryan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.K.H.); (H.A.Y.); (A.A.H.)
| | - Anush A. Hovakimyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.K.H.); (H.A.Y.); (A.A.H.)
| |
Collapse
|
12
|
Rao J, Ren X, Zhu X, Guo Z, Wang C, Zhou CY. Ruthenium-catalyzed reaction of diazoquinones with arylamines to synthesize diarylamines. Org Chem Front 2022. [DOI: 10.1039/d2qo01134d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diarylamine scaffold is common in bioactive molecules. Herein, we report a Ru(ii)-catalyzed C–N cross-coupling reaction of diazoquinones with arylamines, which provides access to a range of functionalized diarylamines in 43–97% yields.
Collapse
Affiliation(s)
- Junxin Rao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaoyu Ren
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi 030024, People's Republic of China
| | - Xin Zhu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi 030024, People's Republic of China
| | - Chengming Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|