1
|
Huang J, Li Y, You Y, He X, Wang X, Yuan K. Pd II/Cu I-Cocatalyzed Radical Arylation of gem-Difluoroalkenes Using Arylsulfonyl Chlorides. J Org Chem 2024; 89:17761-17767. [PMID: 39514978 DOI: 10.1021/acs.joc.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A PdII/CuI-cocatalyzed arylation of gem-difluoroalkenes with arylsulfonyl chlorides, affording various defluorinative arylation/1,2-difunctionalized products, was developed. The interception of aryl radicals generated from the reduction of arylsulfonyl chlorides delivers some hypervalent Pd species, which present high reactivities and chemoselectivities toward the defluorinative arylation product formation. Besides, the nature of the electron-deficient Pd metal center is more prone to reductive elimination under acidic conditions, providing an opportunity to explore new reactivates of fluorinated alkenes into more elaborate substructures.
Collapse
Affiliation(s)
- Jiahui Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yixiao Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuantao You
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xingying He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaozhen Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
2
|
Xia XR, Du J, Zhang YX, Jiang H, Cheng WM. Catalyst-Free Visible Light-Driven Hydrosulfonylation of Alkenes and Alkynes with Sulfonyl Chlorides in Water. CHEMSUSCHEM 2024; 17:e202400650. [PMID: 38850152 DOI: 10.1002/cssc.202400650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/10/2024]
Abstract
A convenient and sustainable method for synthesizing sulfonyl-containing compounds through a catalyst-free aqueous-phase hydrosulfonylation of alkenes and alkynes with sulfonyl chlorides under visible light irradiation is presented. Unactivated alkenes, electron-deficient alkenes, alkyl and aryl alkynes can be hydrosulfonylated with various sulfonyl chlorides at room temperature with excellent yields and geometric selectivities by using tris(trimethylsilyl)silane as a hydrogen atom donor and silyl radical precursor to activate sulfonyl chlorides. Mechanistic studies revealed that the photolysis of tris(trimethylsilyl)silane in aqueous solution to produce silyl radical is crucial for the success of this reaction.
Collapse
Affiliation(s)
- Xi-Rui Xia
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Du
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Xing Zhang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Jiang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan-Min Cheng
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Huang AX, Li R, Lv QY, Yu B. Photocatalytic Sulfonylation: Innovations and Applications. Chemistry 2024; 30:e202402416. [PMID: 39003604 DOI: 10.1002/chem.202402416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed. In this review, the recent advances in photocatalyzed sulfonylation have been reviewed since 2020, with a primary focus on discussing reaction design and mechanism.
Collapse
Affiliation(s)
- An-Xiang Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Qi-Yan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Zhong Y, Zhuang Z, Zhang X, Xu B, Yang C. Difunctionalization of gem-difluoroalkenes for amination and heteroarylation via metal-free photocatalysis. Chem Commun (Camb) 2024; 60:4830-4833. [PMID: 38619085 DOI: 10.1039/d4cc00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
gem-Difluoroalkenes are widely used building blocks in fluorine chemistry. Herein, a metal-free photocatalytic amination and heteroarylation method of gem-difluoroalkenes with heteroaryl carboxylic acid oxime esters as substrates is reported. This environmentally benign reaction proceeds via radical-radical cross-coupling in energy-transfer-mediated photocatalysis and can be used in the rapid construction of heteroaryl difluoroethylamine scaffolds and late-stage modification of complex pharmaceutical structures.
Collapse
Affiliation(s)
- Yuanchen Zhong
- Department of Chemistry, Shanghai University, Shanghai 200444, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Zhen Zhuang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Bin Xu
- Department of Chemistry, Shanghai University, Shanghai 200444, China.
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
5
|
Tan K, He J, Mu Z, Ammar IM, Che C, Geng J, Xing Q. Visible-Light-Promoted C(sp 3)-C(sp 3) Cross-Coupling of Amino Acids and Aryl Trifluoromethyl Ketones Through Simultaneous Decarboxylation and Defluorination. Org Lett 2023. [PMID: 37991739 DOI: 10.1021/acs.orglett.3c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A photoredox-catalyzed approach for the difluoroalkylation of amino acids was achieved through simultaneous decarboxylation and defluorination processes. This innovative protocol employs commonly available amino acids and trifluoroacetophenones as the primary starting materials, eliminating the necessity for preactivation. This strategy has enabled the synthesis of several difluoroketone functionalized amines in moderate to impressive yields. These synthesized compounds are presented as foundational molecules for subsequent modification. The underlying mechanism for the transformation is anchored in a single electron transfer (SET) radical pathway.
Collapse
Affiliation(s)
- Kui Tan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
- Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaan He
- PolyAdvant, Shenzhen, 518000, China
| | | | - Ibrahim M Ammar
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| | - Chao Che
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055China
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| | - Qi Xing
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| |
Collapse
|
6
|
Wen L, Zhou N, Zhang Z, Liu C, Xu S, Feng P, Li H. Electrochemical Difunctionalization of gem-Difluoroalkenes: A Metal-Free Synthesis of α-Difluoro(alkoxyl/azolated) Methylated Ethers. Org Lett 2023; 25:3308-3313. [PMID: 37129411 DOI: 10.1021/acs.orglett.3c01130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A scalable electrochemical difunctionalization of gem-difluoroalkenes to structurally versatile difluoro motifs was achieved. This methodology features reagent-free conditions, good functional group tolerance, and a relatively broad substrate scope. Meanwhile, the electrolysis protocol is easy to handle, and the products show good regio- and chemoselectivity. The reaction mechanism was also preliminarily studied.
Collapse
Affiliation(s)
- Linzi Wen
- PET Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Naifu Zhou
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Zhicheng Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Cong Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Shihai Xu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hongsheng Li
- PET Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Zhang KY, Long F, Peng CC, Liu JH, Hu YC, Wu LJ. Multicomponent Sulfonylation of Alkenes to Access β-Substituted Arylsulfones. J Org Chem 2023; 88:3772-3780. [PMID: 36877592 DOI: 10.1021/acs.joc.2c03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
A novel multicomponent sulfonylation of alkenes is described for the assembly of various β-substituted arylsulfones using cheap and easily available K2S2O5 as a sulfur dioxide source. Of note, the procedure does not need any extra oxidants and metal catalysts and exhibits a relatively wide substrate scope and good functional group compatibility. Mechanistically, an initial arylsulfonyl radical is formed involving the insertion of sulfur dioxide with aryl diazonium salt, followed by alkoxyarylsulfonylation or hydroxysulfonylation of alkenes.
Collapse
Affiliation(s)
- Kai-Yi Zhang
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fang Long
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.,Department of Hunan Cuisine, Changsha Commerce & Tourism College, Changsha 410116, China
| | - Chuan-Chong Peng
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jin-Hui Liu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yun-Chu Hu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
8
|
Lighting Up the Organochalcogen Synthesis: A Concise Update of Recent Photocatalyzed Approaches. Catalysts 2023. [DOI: 10.3390/catal13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
This review describes the recent advances in photocatalyzed reactions to form new carbon–sulfur and carbon–selenium bonds. With a total of 136 references, of which 81 articles are presented, the authors introduce in five sections an updated picture of the state of the art in the light-promoted synthesis of organochalcogen compounds (from 2019 to present). The light-promoted synthesis of sulfides by direct sulfenylation of C–C π-bonds; synthesis of sulfones; the activation of Csp2–N bond in the formation of Csp2–S bonds; synthesis of thiol ester, thioether and thioacetal; and the synthesis of organoselenium compounds are discussed, with detailed reaction conditions and selected examples for each protocol.
Collapse
|
9
|
Gavin JT, Belli RG, Roberts CC. Radical-Polar Crossover Catalysis with a d 0 Metal Enabled by a Redox-Active Ligand. J Am Chem Soc 2022; 144:21431-21436. [DOI: 10.1021/jacs.2c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Joshua T. Gavin
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Roman G. Belli
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Courtney C. Roberts
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Kim H, Jung Y, Cho SH. Defluorinative C-C Bond-Forming Reaction of Trifluoromethyl Alkenes with gem-(Diborylalkyl)lithiums. Org Lett 2022; 24:2705-2710. [PMID: 35380841 DOI: 10.1021/acs.orglett.2c00809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the transition-metal-free defluorinative C-C bond-forming reaction of trifluoromethyl alkenes with gem-(diborylalkyl)lithiums. This synthetic strategy provides access to a variety of 4,4-difluoro homoallylic diboronate esters, which serve as versatile intermediates in the efficient preparation of valuable gem-difluoroalkene derivatives. Further synthetic modifications are conducted to demonstrate the synthetic utility of the obtained 4,4-difluoro homoallylic diboronate esters.
Collapse
Affiliation(s)
- Haeun Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
11
|
Liang RB, Zhu CM, Song PQ, Zhao LM, Tong QX, Zhong JJ. External oxidant-free and selective thiofunctionalization of alkenes enabled by photoredox-neutral catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoredox approach was reported to realize a highly selective three-component thiohydroxylation, thioalkoxylation and thioamination of vinylarenes towards valuable vicinal S,O- and S,N-disubstituted molecules under mild conditions.
Collapse
Affiliation(s)
- Rong-Bin Liang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Can-Ming Zhu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Pei-Qi Song
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Lei-Min Zhao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
12
|
Gu Y, Yang Y, Wang Y, Wang Z, Zhu Y, Li Y. Transition-metal-free insertion of alkynes into the C–C σ-bond of cyclic β-keto sulfones: an atom-economical way to medium-size-ring sulfonyl derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj01197b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel base-promoted and highly efficient strategy for the preparation of medium-size-ring sulfonyl derivatives has been developed.
Collapse
Affiliation(s)
- Yingge Gu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Yajie Yang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Ye Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Zongkang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Yilin Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| |
Collapse
|