1
|
Bora SK, Medhi B, Sarma M, Saikia AK. BF 3·OEt 2-Mediated Cascade Synthesis of 4 H-3,1-Benzoxazines from 2-Azidobenzaldehydes and Homoallylic Alcohols. J Org Chem 2025; 90:6443-6453. [PMID: 40323632 DOI: 10.1021/acs.joc.5c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Herein, we developed a methodology for the synthesis of 4H-3,1-benzoxazine derivatives by utilizing 2-azidobenzaldehydes and homoallylic alcohols in the presence of BF3·OEt2 in moderate to good yields. This reaction proceeds via retro-Prins reaction, followed by nucleophilic attack by azide and subsequent elimination of nitrogen and proton. In addition, the method was successfully applied for the synthesis of triazole compounds via the click reaction.
Collapse
Affiliation(s)
- Surjya Kumar Bora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Biman Medhi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
2
|
Ren J, Xiong Y, Li Q, Wang B, Wang G, Wang B, Liu H, Yang X. Advances in transition-metal catalyzed C-H bond activation of amidines to synthesize aza-heterocycles. RSC Adv 2025; 15:16921-16938. [PMID: 40395784 PMCID: PMC12091291 DOI: 10.1039/d5ra02241j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025] Open
Abstract
Amidine compounds, as important nitrogen analogues of isoelectronic carboxylic acids, are found throughout biologically active molecules and serve as the most attractive precursors for the synthesis of N-containing compounds. In this review, the advancements in the synthesis of aza-heterocycles via transition-metal catalyzed C-H bond activation of amidines have been summarized through diverse annulation reactions. Amidines act as two-electron donors via the more basic and less sterically crowded imino lone pair and coordinate with transition-metals, in which N-H imine could act as both directing group and intramolecular nucleophile, electrophile or proton acceptor. The mechanisms of different annulation pathways will be highlighted in this review along with a discussion of more recent developments in the field.
Collapse
Affiliation(s)
- Jie Ren
- Henan International Joint Research Laboratory for Utilization of Plant Functional Components, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry No. 136 Ke Xue Avenue Zhengzhou Henan 450002 People's Republic of China
| | - Yijia Xiong
- Henan International Joint Research Laboratory for Utilization of Plant Functional Components, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry No. 136 Ke Xue Avenue Zhengzhou Henan 450002 People's Republic of China
| | - Qian Li
- Henan International Joint Research Laboratory for Utilization of Plant Functional Components, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry No. 136 Ke Xue Avenue Zhengzhou Henan 450002 People's Republic of China
| | - Bin Wang
- Henan International Joint Research Laboratory for Utilization of Plant Functional Components, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry No. 136 Ke Xue Avenue Zhengzhou Henan 450002 People's Republic of China
| | - Guanglu Wang
- Henan International Joint Research Laboratory for Utilization of Plant Functional Components, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry No. 136 Ke Xue Avenue Zhengzhou Henan 450002 People's Republic of China
| | - Bingyang Wang
- Henan International Joint Research Laboratory for Utilization of Plant Functional Components, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry No. 136 Ke Xue Avenue Zhengzhou Henan 450002 People's Republic of China
| | - Huimin Liu
- Henan International Joint Research Laboratory for Utilization of Plant Functional Components, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry No. 136 Ke Xue Avenue Zhengzhou Henan 450002 People's Republic of China
| | - Xuepeng Yang
- Henan International Joint Research Laboratory for Utilization of Plant Functional Components, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry No. 136 Ke Xue Avenue Zhengzhou Henan 450002 People's Republic of China
| |
Collapse
|
3
|
Guo X, Miao M, Zhao P, Ma Y. Molecular-Oxygen-Mediated Multicomponent Oxidative Cyclization: Synthesis of Tertiary-Alcohol-Unit-Bearing N-Heterocycles via Transforming C-H to C-OH Bonds. Org Lett 2024; 26:10435-10440. [PMID: 39593213 DOI: 10.1021/acs.orglett.4c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
We developed a molecular-oxygen-mediated multicomponent oxidative cyclization strategy to synthesize N-heterocycles containing tertiary alcohol units via the formation of key C-OH bonds and quaternary carbon centers. This formal [3 + 2 + 1] annulation offers a green and sustainable alternative for the de novo C-OH bond formation, using O2 as both the oxidant and oxygen source under metal- and catalyst-free conditions. Notably, continuous [1,5]-hydrogen transfer together with excess alcohols promotes the formation of C-OH-bearing products. Additionally, the generation of quaternary carbon centers inhibits the conversion of C-OH bonds to C═O bonds, thus stabilizing the desired products.
Collapse
Affiliation(s)
- Xiaoshuang Guo
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Maozhong Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Peng Zhao
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| |
Collapse
|
4
|
Doraghi F, Baghershahi P, Ghasemi M, Mahdavi M, Al-Harrasi A. Rhodium-catalyzed transformations of diazo compounds via a carbene-based strategy: recent advances. RSC Adv 2024; 14:39337-39352. [PMID: 39670167 PMCID: PMC11635351 DOI: 10.1039/d4ra07010k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
Diazo compounds are known to be good coupling partners in the synthesis of heterocycles, carbocycles and functionalized molecules via a rhodium carbene-based strategy. Many heterocyclic and carbocyclic compounds, including isoquinolones and isocoumarins, quinoxalines, indoles, pyrrones, benzothazines, enaminones, benzenes and seven-membered rings, can be constructed using this rhodium-catalyzed system. The reaction mechanism involves C-H activation, carbene insertion and an annulation/functionalization sequence. This review describes the progress made in the last five years in rhodium-catalyzed transformations of diazo compounds as easily accessible precursors in organic chemistry.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Parsa Baghershahi
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran Iran
| | - Mehran Ghasemi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa Nizwa 616 Sulanate of Oman
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa Nizwa 616 Sulanate of Oman
| |
Collapse
|
5
|
Yang C, Li B, Zhang X, Fan X. Synthesis of Indenone-Fused Pyran Derivatives from Aryl Enaminones and Cyclopropenones through Unsymmetrical Relay C-H Bond Activation and Double C-C/C-O Bond Formation. Org Lett 2024; 26:6602-6607. [PMID: 39078057 DOI: 10.1021/acs.orglett.4c02197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Presented herein is a novel synthesis of indenone-fused pyran derivatives via the cascade reactions of aryl enaminones with cyclopropenones. The formation of products involves a one-pot cascade procedure consisting of aryl C-H bond and enamine C-H bond functionalization along with C-C bond cleavage of cyclopropenone and 1,3-rearrangement of the in situ-formed allylic alcohol moiety followed by intramolecular O-nucleophilic addition and Me2NH elimination. To our knowledge, this is the first synthesis of indenone-fused pyran derivatives via simultaneous formation of both indenone and pyran scaffolds through concurrent unsymmetrical relay C-H bond activation and double C-C/C-O bond formation. Moreover, the usefulness of this method is further showcased by its suitability for large-scale synthetic scenarios and diverse transformations of products.
Collapse
Affiliation(s)
- Chun Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Wan Y, Li C, Lin Z, Lin X, Gao H, Yi W, Zhou Z. Assembly of Selenadiazine Scaffolds via Rh(III)-Catalyzed Amidine-Directed Cascade C-H Selenylation/[5 + 1] Annulation with Elemental Selenium. Org Lett 2024; 26:6625-6630. [PMID: 39087791 DOI: 10.1021/acs.orglett.4c02262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
By employing elemental selenium as the selenium source, we have realized the amidine-directed Rh(III)-catalyzed cascade C-H selenylation/[5 + 1] annulation for the direct construction of structurally novel selenadiazine, benzoselenadiazine, and benzoselenazol-3-amine frameworks with specific site selectivity and good functional group tolerance. Besides, the obtained products can serve as fundamental platforms for subsequent chemical transformations, and thus, the feasible SeNEx reaction, SeNEx/Michael addition, and simple conversion of the selenadiazine product into diverse other organoselenium molecules were demonstrated accordingly. Taken together, the developed methodology efficiently expands the chemical space of organoselenium species.
Collapse
Affiliation(s)
- Yuyan Wan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Chensi Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhensheng Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xinyue Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
7
|
Zhang Y, Mi YH, Wang K, Zhao HW. α-Carbonyl Rh-Carbenoid Initiated Cascade Assembly of Diazobarbiturates with Alkylidene Pyrazolones for Synthesis of Spirofuropyrimidines. Molecules 2024; 29:3178. [PMID: 38999130 PMCID: PMC11243257 DOI: 10.3390/molecules29133178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Catalyzed by Rh2(esp)2 (10 mol%) and (±)-BINAP (20 mol%) in DCE at 80 °C, the cascade assembly between diazobarbiturates and alkylidene pyrazolones proceeded readily and produced spiro-furopyrimidines in 38-96% chemical yields. The chemical structure of the prepared spirofuro-pyrimidines was firmly confirmed by X-ray diffraction analysis.
Collapse
Affiliation(s)
| | | | | | - Hong-Wu Zhao
- College of Life Science and Bio-Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China; (Y.Z.); (Y.-H.M.); (K.W.)
| |
Collapse
|
8
|
Zuo Y, Zuo P, Liu M, Wang X, Du J, Li X, Zhang P, Xu Z. Recent approaches for the synthesis of heterocycles from amidines via a metal catalyzed C-H functionalization reaction. Org Biomol Chem 2024; 22:5014-5031. [PMID: 38831700 DOI: 10.1039/d4ob00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Transition metal catalyzed C-H bond activation has become one of the most important tools for constructing new chemical bonds. Introducing directing groups to the substrates is the key to a successful reaction, these directing groups can also be further transformed in the reaction. Amidines with their unique structure and reactivity are ideal substrates for transition metal-catalyzed C-H transformations. This review describes the major advances and mechanistic investigations of the C-H activation/annulation tandem reactions of amidines until early 2024, focusing on metal-catalyzed C-H activation of amidines with unsaturated compounds, such as alkynes, ketone, vinylene carbonate, cyclopropanols and their derivatives. Meanwhile this manuscript also explores the reaction of amidines with different carbene precursors, for example diazo compounds, azide, triazoles, pyriodotriazoles, and sulfoxonium ylides as well as their own C-H bond activation/cyclization reactions. A bright outlook is provided at the end of the manuscript.
Collapse
Affiliation(s)
- Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Pengfei Zuo
- Kunshan Customs, Kunshan, Jiangsu 215300, People's Republic of China
| | - Meijun Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoqing Wang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoling Li
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Pinghua Zhang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| |
Collapse
|
9
|
Wang M, Xu Y, Hou H, Zhang X, Fan X. Divergent synthesis of pyrrolizine derivatives through C-H bond functionalization of pyrroles. Chem Commun (Camb) 2024; 60:6536-6539. [PMID: 38841891 DOI: 10.1039/d4cc02158d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Presented herein is the synthesis of diversely functionalized pyrrolizines from the reaction of N-alkoxycarbamoyl pyrroles with CF3-ynones. The formation of the product is based on a C-H bond activation-initiated cascade process including N-alkoxycarbamoyl group-directed alkenylation of the pyrrole scaffold followed by simultaneous intramolecular nucleophilic addition along with cleavage and transfer of the directing group. By taking advantage of the rich chemistry of the transferred alkoxycarbamoyl moiety, the products could be transformed into a series of structurally and biologically interesting pyrrolizine derivatives. To our knowledge, this is the first example in which the N-alkoxycarbamoyl unit acted as a transferable and transformable directing group for the divergent synthesis of pyrrolizines.
Collapse
Affiliation(s)
- Manqing Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yuanshuang Xu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Huihang Hou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
10
|
Wang M, Yan S, Li B, Hou H, Ma C, Zhang X, Fan X. Synthesis of CF 3-Substituted N-Heterocyclic Compounds Based on C-H Activation-Initiated Formal [2 + 3] Annulation Featuring with a Latent Nucleophilic Site. J Org Chem 2024. [PMID: 38773933 DOI: 10.1021/acs.joc.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Presented herein is a novel synthesis of CF3-substituted pyrrolo[1,2-a]indole derivatives based on the cascade reactions of N-alkoxycarbamoyl indoles with CF3-ynones. Mechanistically, the formation of a product involves a tandem process initiated by Rh(III)-catalyzed and N-alkoxycarbamoyl group-directed regioselective C2-H alkenylation of the indole scaffold followed by in situ removal of the directing group and intramolecular N-nucleophilic addition/annulation under one set of reaction conditions. To our knowledge, this is the first example in which a N-alkoxycarbamoyl unit initially acts as a directing group for C2-H functionalization of the indole scaffold and is then removed to provide the required reactive NH-moiety for subsequent intramolecular condensation. Moreover, the products thus obtained could be conveniently transformed into structurally and biologically attractive cycloheptenone fused indole derivatives through an acid-promoted cascade transformation. In addition, studies on the activity of selected products against human cancer cell lines demonstrated their potential as lead compounds for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Manqing Wang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shengnan Yan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bin Li
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Huihang Hou
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Chunhua Ma
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xinying Zhang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xuesen Fan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
11
|
Xue L, Gao C, Zhang X, Fan X. Synthesis of Acyl Cyclopentaquinolinones through Simultaneous Construction of the Heterocyclic Scaffold and Introduction of the Acyl Group. J Org Chem 2024; 89:6292-6305. [PMID: 38625738 DOI: 10.1021/acs.joc.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Presented herein is an effective and concise synthesis of acyl cyclopentaquinolinone derivatives via the cascade reactions of N-(o-ethynylaryl)acrylamides with α-diazo carbonyl compounds. The formation of product involves a visible light-induced radical formation from α-diazo carbonyl compound followed by its addition onto the acrylamide moiety to trigger double radical annulation, single-electron oxidation, and β-elimination. To our knowledge, this is the first example in which the cyclopentaquinolinone scaffold was constructed along with the introduction of an acyl group under visible light irradiation conditions. Compared with literature methods for similar purpose, this newly developed protocol has advantages such as readily accessible substrates, mild reaction conditions, valuable products, concise synthetic procedure, and high sustainability. With all these merits, this method is expected to find wide applications in the construction of related acyl heterocyclic skeletons.
Collapse
Affiliation(s)
- Lian Xue
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chang Gao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
12
|
Wang K, Sun Y, Li B, Zhang X, Fan X. Expeditious Synthesis of Spiroindoline Derivatives via Tandem C(sp 2)-H and C(sp 3)-H Bond Functionalization of N-Methyl- N-nitrosoanilines. Org Lett 2024; 26:3091-3096. [PMID: 38567810 DOI: 10.1021/acs.orglett.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Presented herein is a novel synthesis of pharmaceutically privileged spiroindoline derivatives via cascade reactions of N-methyl-N-nitrosoanilines with diazo homophthalimides. A group of mechanistic studies disclosed that the formation of product involves an unusual reaction mode of N-methyl-N-nitrosoaniline featuring an initial C(sp2)-H bond activation/alkylation followed by a C(sp3)-H bond activation/spiroannulation. To our knowledge, this is the first example in which N-methyl-N-nitrosoaniline acts as a C3N1 synthon to accomplish formal [4+1] spiroannulation with the participation of the N-methyl unit rather than the previously reported C2N1 synthon to undergo formal [3+2] annulation without the participation of the N-methyl unit. In general, this newly developed synthetic protocol features simple and readily accessible starting materials, valuable products, unique reaction mechanism, high efficiency and atom-economy, excellent compatibility with diverse functional groups, and ready scalability.
Collapse
Affiliation(s)
- Kelin Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqian Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
13
|
Zhou Q, Li B, Zhang X, Fan X. C-H activation-initiated spiroannulation reactions and their applications in the synthesis of spirocyclic compounds. Org Biomol Chem 2024; 22:2324-2338. [PMID: 38391295 DOI: 10.1039/d3ob02056h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Spirocyclic skeletons are prevalent in natural products, pharmaceuticals and organic functional materials. Meanwhile, transition-metal-catalyzed C-H activation reactions have demonstrated unparalleled advantages such as high efficiency, excellent atom-economy, good chemoselectivity and regioselectivity for the formation of target organic molecules. In recent years, C-H activation reactions have been creatively utilized in the synthesis of spirocyclic compounds. This review summarizes the most recent progress made in C-H activation-initiated spiroannulation reactions and their applications in the construction of structurally diverse and biologically valuable spirocyclic scaffolds by using alkynes, diazo compounds, maleimides, alkenes, quinones and cyclopropenones as the coupling partners.
Collapse
Affiliation(s)
- Qianting Zhou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Bin Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
14
|
He X, Liu K, Yan S, Wang Y, Jiang Y, Zhang X, Fan X. Synthesis of 1,7-Fused Indolines Tethered with Spiroindolinone Based on C-H Activation Strategy with Air as a Sustainable Oxidant. J Org Chem 2024; 89:1880-1897. [PMID: 38252142 DOI: 10.1021/acs.joc.3c02630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Herein, we present an efficient synthesis of 1,7-fused indolines tethered with a spiroindolinonyl moiety through the cascade reaction of indolin-1-yl(aryl)methanimines with diazo oxindoles. To the best of our knowledge, this is the first example in which 1,7-fused indoline skeleton was constructed along with the simultaneous introduction of a spiro element initiated by the C-H bond activation of indoline. In forming the title product, the indoline substrate and the diazo coupling partner demonstrated an unprecedented reaction pattern in which the latter acts as a C1 synthon to participate in the construction of the spirocyclic scaffold through the reductive elimination of a key seven-membered Ru(II) species by using air as an effective and sustainable oxidant to regenerate the active catalyst. Moreover, studies on the cytotoxicity of selected products against several human cancer cell lines demonstrated their potential as lead compounds for the development of anticancer drugs. With notable features such as simple and economical substrates, pharmaceutically valuable products with sophisticated spirocyclic skeleton, mild reaction conditions, cost-free and sustainable oxidants, high efficiency, excellent compatibility with diverse functional groups, and scalability, this method is expected to find wide applications in related areas.
Collapse
Affiliation(s)
- Xing He
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Kangli Liu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shengnan Yan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yue Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
15
|
Gong Z, Zhao Y, Xu B, Yang Z, Ren B, Yang H, Zeng C, Chen R, Xu YJ, Li Q. Identification of novel 3-aryl-1-aminoisoquinolines-based KRAS G12C inhibitors: Rational drug design and expedient construction by CH functionalization/annulation. Bioorg Chem 2024; 142:106954. [PMID: 37948926 DOI: 10.1016/j.bioorg.2023.106954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Developing a synthetic methodology to expediently construct a specific drug scaffold with the desired biological activity remains challenging. Herein, we describe a work on rational application of a synthetic methodology in the synthesis of KRASG12C inhibitors. Novel KRASG12C inhibitors were initially designed with 1-amino-3-aryl isoquinoline scaffold using structure-based drug design strategy. A ruthenium-catalyzed direct monoCH functionalization/annulation cascade reaction of amidines and sulfoxonium ylides was then developed with high versatility of substrates and good tolerance for polar functional groups. By using this reaction, the target compounds 1-amino-3-aryl isoquinolines were facilely prepared. Further in vitro tests led to identification of two novel lead compounds with KRASG12C inhibitory activity.
Collapse
Affiliation(s)
- Zirong Gong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yu Zhao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Buyi Xu
- National Anti-drug Laboratory Sichuan Regional Center, Chengdu, Sichuan, 610206, China
| | - Zhou Yang
- National Anti-drug Laboratory Sichuan Regional Center, Chengdu, Sichuan, 610206, China
| | - Boquan Ren
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Han Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Chengfu Zeng
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Renqiang Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Qing Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| |
Collapse
|
16
|
Vijayakumar A, Manod M, Krishna RB, Mathew A, Mohan C. Diversely functionalized isoquinolines and their core-embedded heterocyclic frameworks: a privileged scaffold for medicinal chemistry. RSC Med Chem 2023; 14:2509-2534. [PMID: 38107174 PMCID: PMC10718595 DOI: 10.1039/d3md00248a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023] Open
Abstract
Isoquinoline-enrooted organic small-molecules represent a challenging molecular target in the organic synthesis arsenal attributed to their structural diversity and therapeutic importance. Into the bargain, isoquinolines are significant structural frameworks in modern medicinal chemistry and drug development. Consequently, synthetic organic and medicinal chemists have been intensely interested in efficient synthetic tactics for the sustainable construction of isoquinoline frameworks and their derivatives in enantiopure or racemic forms. This review accentuates an overview of the literature on the modern synthetic approaches exploited in synthesising isoquinolines and their core embedded heterocyclic skeletons from 2021 to 2022. In detail, the methodologies and inspected pharmacological studies for the array of diversely functionalized isoquinolines or their core-embedded heterocyclic/carbocyclic structures involving the introduction of substituents at C-1, C-3, and C-4 carbon and N-2 atom, bond constructions at the C1-N2 atom and C3-N2 atom, and structural scaffolding within isoquinoline compounds have been reviewed. This intensive study highlights the need for and relevance of relatively unexplored bioisosterism employing isoquinoline-based small-molecules in drug design.
Collapse
Affiliation(s)
- Archana Vijayakumar
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - M Manod
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - R Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - Abra Mathew
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678577 India
| | - Chithra Mohan
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| |
Collapse
|
17
|
Wang Y, Qi M, Lu P, Wang Y. Rh(III)-Catalyzed Reaction of 4-Diazoisochroman-3-imines with (2-Formylaryl)boronic Acids To Access a Straightforward Construction of 5 H-Isochromeno[3,4- c]isoquinolines. J Org Chem 2023; 88:13544-13552. [PMID: 37698421 DOI: 10.1021/acs.joc.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
An Rh(III)-catalyzed one-pot synthesis of 5H-isochromeno[3,4-c]isoquinolines from readily available 4-diazoisochroman-3-imines and (2-formylphenyl)boronic acids is reported. The cascade annulation involves a Rh(III)-catalyzed cross-coupling and an intramolecular nucleophilic addition-elimination process. A series of biologically important 5H-isochromeno[3,4-c]isoquinolines were obtained in good to excellent yields. The method can be extended to synthesize 7H-isochromeno[3,4-b]thieno[3,2-d]pyridines and 7H-isochromeno[3,4-b]thieno[2,3-d]pyridines from the corresponding heteroaryl boronic acids.
Collapse
Affiliation(s)
- Yingxiao Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Minghui Qi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
18
|
Xue L, Song X, Zhang X, Fan X. Synthesis of O-Heterocycle Spiro-Fused Cyclopentaquinolinones and Cyclopentaindenes through Visible Light-Induced Radical Cyclization Reactions. J Org Chem 2023; 88:12641-12657. [PMID: 37591490 DOI: 10.1021/acs.joc.3c01317] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Presented herein is an effective and sustainable synthesis of O-heterocycle spiro-fused cyclopentaquinolinone and cyclopentaindene derivatives through light-driven cascade reactions of N-(o-ethynylaryl)acrylamides or 2-(2-(phenylethynyl)benzyl)acrylate with various O-heterocycles. Experimental mechanistic studies revealed that these reactions are initiated by visible light-induced radical formation from O-heterocycle and its regioselective addition onto the acrylamide or acrylate moiety followed by 6-exo-dig and 5-endo-trig cascade radical annulation, which is terminated by single electron oxidation and proton elimination. Compared with previously reported synthetic methods for similar purposes, this newly developed protocol has advantages such as a broad substrate scope, extremely mild reaction conditions, excellent atom-economy, high efficiency, and good compatibility with diverse functional groups. With all of these merits, this method is expected to find wide applications in the related research arena.
Collapse
Affiliation(s)
- Lian Xue
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xia Song
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xinying Zhang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xuesen Fan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
19
|
Wang M, Zhou Q, Zhang X, Fan X. Condition‐Controlled Divergent Synthesis of Imidazoindolone Spiroisoquinolinones from
N
‐Alkoxycarboxamide Indoles and Diazo Homophthalimides. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Manqing Wang
- Pingyuan Laboratory Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007, People's Republic of China
| | - Qianting Zhou
- Pingyuan Laboratory Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007, People's Republic of China
| | - Xinying Zhang
- Pingyuan Laboratory Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007, People's Republic of China
| | - Xuesen Fan
- Pingyuan Laboratory Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007, People's Republic of China
| |
Collapse
|
20
|
Guo S, Zhang Z, Wei Z, Zhu Y, Fan X. Rh(III)-Catalyzed Spiroannulation Reaction of N-Aryl Nitrones with 2-Diazo-1,3-indandiones: Synthesis of Spirocyclic Indole- N-oxides and Their 1,3-Dipolar Cycloaddition with Maleimides. J Org Chem 2023; 88:3845-3858. [PMID: 36884277 DOI: 10.1021/acs.joc.3c00117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
An efficient strategy for the preparation of spirocyclic indole-N-oxide compounds through a Rh(III)-catalyzed [4 + 1] spiroannulation reaction of N-aryl nitrones with 2-diazo-1,3-indandiones as C1 synthons under extremely mild conditions is presented. From this reaction, 40 spirocyclic indole-N-oxides were easily obtained in up to 98% yield. In addition, the title compounds could be successfully used for the construction of structurally intriguing maleimide-containing fused polycyclic scaffolds via a diastereoselective 1,3-dipolar cycloaddition reaction with maleimides.
Collapse
Affiliation(s)
- Shenghai Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ziyi Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zhaotong Wei
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yuanqing Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
21
|
Sankaram GS, Sahoo T, Sridhar B, Subba Reddy BV. Rhodium(III)-catalyzed oxidative annulation of N-arylbenzamidines with maleimides via dual C-H activation. Org Biomol Chem 2023; 21:1719-1724. [PMID: 36723131 DOI: 10.1039/d2ob01972h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An oxidative annulation of N-arylbenzimidamides with maleimides has been developed for the first time using a catalytic amount of the [Cp*RhCl2]2 complex for the synthesis of a diverse range of 1H-benzo[4,5]imidazo[2,1-a]pyrrolo[3,4-c]isoquinoline-1,3(2H)-dione derivatives. This method is versatile and atom-economical for producing polycyclic benzo[4,5]imidazo[2,1-a]pyrrolo[3,4-c] isoquinoline-1,3(2H)-dione scaffolds in a single step.
Collapse
Affiliation(s)
- G Siva Sankaram
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Tanmoy Sahoo
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - B Sridhar
- Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| | - B V Subba Reddy
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
22
|
Li H, Shen M, Li B, Zhang X, Fan X. Solvent-Dependent Selective Synthesis of CF 3-Tethered Indazole Derivatives Based on Multiple Bond Activations. Org Lett 2023; 25:720-725. [PMID: 36706028 DOI: 10.1021/acs.orglett.2c04003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Presented herein is a solvent-dependent selective synthesis of CF3-tethered indazole derivatives via the cascade reactions of 1-arylpyrazolidinones with trifluoromethyl ynones. Mechanistically, the formation of the title products involves cascade N-H/C-H/C-N/C-C bond cleavage along with pyrazole ring formation and pyrazolidinone ring opening. For the formation of a pyrazole scaffold, 1-phenylpyrazolidinone acts as a C2N2 synthon, while trifluoromethyl ynone serves as a C1 synthon. Meanwhile, trifluoromethyl ynone also acts as an enol unit to facilitate the ring opening of the pyrazolidinone ring and provide a trifluoropropenoxy fragment via cleavage of the alkynyl triple bond and migration of the cleaved moiety. When the reaction was run in trifluoroethanol instead of DCE, it selectively afforded indazole derivatives tethered with a trifluoroethoxy moiety through in situ transesterification. To our knowledge, this is the first synthesis of CF3-tethered indazole derivatives via concurrent alkynyl activation, pyrazole formation, and CF3 migration.
Collapse
Affiliation(s)
- Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengyang Shen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
23
|
Li N, Hu B, Zhang X, Fan X. Selective Construction of Spiro or Fused Heterocyclic Scaffolds via One-pot Cascade Reactions of 1-Arylpyrazolidinones with Maleimides. J Org Chem 2023; 88:60-74. [PMID: 36563107 DOI: 10.1021/acs.joc.2c01756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Presented herein is a controllable selective construction of spiro or fused heterocyclic scaffolds through the one-pot cascade reactions of 1-phenylpyrazolidinones with maleimides. To be specific, succinimide spiro pyrazolo[1,2-a]pyrazolones were effectively formed via [4 + 1] spiroannulation of 1-phenylpyrazolidinones with maleimides through simultaneous C(sp2)-H bond activation/functionalization and intramolecular cyclization along with the traceless fusion of the pyrazolidinonyl unit into the final product. In this reaction, air acts as a cost-effective and environmentally sustainable oxidant to assist the regeneration of the Rh(III) catalyst. Alternatively, succinimide-fused pyrazolidinonylcinnolines were formed from the same starting materials through an initial [4 + 1] spiroannulation followed by base-promoted skeleton rearrangement of the in situ formed spiro product without isolation. Notable features of these protocols include easily tunable selectivity, broad substrate scope, cost-effective and sustainable oxidant, excellent atom economy, and facile scalability.
Collapse
Affiliation(s)
- Na Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bing Hu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
24
|
Yu C, Xu Y, Zhang X, Fan X. Selective Synthesis of Pyrazolonyl Spirodihydroquinolines or Pyrazolonyl Spiroindolines under Aerobic or Anaerobic Conditions. Org Lett 2022; 24:9473-9478. [PMID: 36524816 DOI: 10.1021/acs.orglett.2c03952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Presented herein is a condition-controlled selective synthesis of pyrazolonyl spirodihydroquinolines or pyrazolonyl spiroindolines through formal [5 + 1] or [4 + 1] spiroannulation of 2-alkenylanilines with diazopyrazolones. Mechanistically, the formation of the title products involves initial generation of a pyrazolonyl spiro-fused seven-membered ruthenacycle species serving as a key intermediate through Ru(II)-catalyzed C-H/N-H bonds metalation, carbene formation, and its migratory insertion. When the reaction is carried out under air, the key intermediate undergoes reductive elimination to afford spirodihydroquinoline. When the reaction is run under argon, the key intermediate undergoes protonation and intramolecular nucleophilic addition to furnish spiroindoline. This work provides an atom-economical protocol for the effective functionalization of alkenyl C(sp2)-H bond, allowing rapid and selective assembly of valuable spiroscaffolds with a broad range of substrates.
Collapse
Affiliation(s)
- Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
25
|
Cai X, Song X, Zhu Q, Zhang X, Fan X. Concise Synthesis of Spirocyclic Dihydrophthalazines through Spiroannulation Reactions of Aryl Azomethine Imines with Cyclic Diazo Compounds. J Org Chem 2022; 87:11048-11062. [PMID: 35921479 DOI: 10.1021/acs.joc.2c01312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spiroannulation reactions are fundamental and invaluable for the synthesis of spirocyclic compounds. Presented herein are novel cascade reactions of aryl azomethine imines with cyclic diazo compounds leading to the formation of spirocyclic dihydrophthalazine derivatives. Based on experimental mechanistic studies, the formation of the title products is believed to go through azomethine imine-assisted cylcometalation, Rh-carbene formation through dediazonization, and migratory insertion followed by reductive elimination and azomethine imine ring opening. Control experiments revealed that air acts as an effective and sustainable co-oxidant to facilitate the cascade reaction. In general, this concise synthesis of the unprecedented spirocyclic dihydrophthalazine derivatives has advantages such as easily accessible substrates, good functional group compatibility, mild reaction conditions, high efficiency and selectivity, and excellent atom-economy. In addition, the value of this protocol is underlined by its ready scalability and divergent derivation of products.
Collapse
Affiliation(s)
- Xinyuan Cai
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xia Song
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qiuhui Zhu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
26
|
Li N, Zhang X, Fan X. Synthesis of pyrazolidinone fused cinnolines via the cascade reactions of 1-phenylpyrazolidinones with vinylene carbonate. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Yu C, Xu Y, Zhang X, Fan X. Synthesis of N-Arylindoles from 2-Alkenylanilines and Diazonaphthalen-2(1 H)-ones through Simultaneous Indole Construction and Aryl Introduction. J Org Chem 2022; 87:7392-7404. [PMID: 35594494 DOI: 10.1021/acs.joc.2c00628] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this paper, an efficient synthesis of N-arylindoles through the cascade reaction of 2-alkenylanilines with diazonaphthalen-2(1H)-ones is presented. Mechanistically, this reaction involves the generation of a Ru-carbene complex from diazonaphthalen-2(1H)-one, followed by carbene N-H bond insertion with 2-alkenylaniline, intramolecular cyclization, and oxidative aromatization. In this reaction, the Ru(II) complex acts as a multifunctional catalyst to promote not only the carbene formation but also the intramolecular cyclization and the dehydrogenative aromatization. Meanwhile, air acts as a green and cost-effective oxidant. To our knowledge, this is the first example in which N-arylindoles were synthesized through simultaneous introduction of the N-aryl unit and construction of the indole scaffold. Notable advantages of this method include readily accessible and halide-free substrates, additive-free reaction conditions, good efficiency, excellent atom economy, and compatibility with diverse functional groups. In addition, the utility of the product thus obtained was showcased by its diverse structural transformations.
Collapse
Affiliation(s)
- Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
28
|
Shen M, Li H, Zhang X, Fan X. Rh( iii)-catalyzed simultaneous [3 + 3]/[5 + 1] annulation of 1-arylpyrazolidinones with gem-difluorocyclopropenes leading to fluorinated pyridopyrimidinone derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo01230h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented herein is an efficient and concise synthesis of fluorinated pyridopyrimidinone derivatives through formal [3 + 3]/[5 + 1] annulation of 1-arylpyrazolidinones with gem-difluorocyclopropenes.
Collapse
Affiliation(s)
- Mengyang Shen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
29
|
Guo S, Zhang Z, Zhu Y, Wei Z, Zhang X, Fan X. Rh( iii)-catalyzed substrate-dependent oxidative (spiro)annulation of isoquinolones with diazonaphthoquinones: selective access to new spirocyclic and oxepine-fused polycyclic compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01322c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An efficient protocol for the selective synthesis of novel isoquinolone-containing spirocyclic and oxepine-fused polycyclic compounds via rhodium(iii)-catalyzed (spiro)annulation of NH-isoquinolones with diazonaphthalen-2(1H)-ones is reported.
Collapse
Affiliation(s)
- Shenghai Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ziyi Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yuanqing Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zhaotong Wei
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
30
|
Song X, Wang K, Xue L, Yu H, Zhang X, Lee R, Fan X. Coupling partner-dependent unsymmetrical C–H functionalization of N-phenoxyacetamides leading to sophisticated spirocyclic scaffolds. Org Chem Front 2022. [DOI: 10.1039/d2qo00851c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a coupling partner-dependent unsymmetrical C–H functionalization of N-phenoxyacetamides leading to the formation of sophisticated spirocyclic scaffolds is presented.
Collapse
Affiliation(s)
- Xia Song
- Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Kelin Wang
- Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lian Xue
- Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Xinying Zhang
- Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Richmond Lee
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Xuesen Fan
- Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|