Kodama T, Saito K, Tobisu M. Nickel-catalyzed skeletal transformation of tropone derivatives
via C-C bond activation: catalyst-controlled access to diverse ring systems.
Chem Sci 2022;
13:4922-4929. [PMID:
35655866 PMCID:
PMC9067618 DOI:
10.1039/d2sc01394k]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/03/2022] [Indexed: 02/02/2023] Open
Abstract
We report herein on nickel-catalyzed carbon-carbon bond cleavage reactions of 2,4,6-cycloheptatrien-1-one (tropone) derivatives. When a Ni/N-heterocyclic carbene catalyst is used, decarbonylation proceeds with the formation of a benzene ring, while the use of bidentate ligands in conjunction with an alcohol additive results in a two-carbon ring contraction with the generation of cyclopentadiene derivatives. The latter reaction involves a nickel-ketene complex as an intermediate, which was characterized by X-ray crystallography. The choice of an appropriate ligand allows for selective synthesis of four different products via the cleavage of a seven-membered carbocyclic skeleton. Reaction mechanisms and ligand-controlled selectivity for both types of ring contraction reactions were also investigated computationally.
Collapse