1
|
Pan C, Kakeya H. Recent progress in chemistry and bioactivity of novel enzyme inhibitors from natural products: A comprehensive review. Eur J Med Chem 2025; 289:117481. [PMID: 40073533 DOI: 10.1016/j.ejmech.2025.117481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
The essence of enzymes is to maintain the normal activities of living organisms by catalyzing metabolic reactions and regulating cells. Inhibiting enzyme activity can slow the progression of certain diseases and cure them, making enzymes one of the major targets for disease treatment. The search and development of novel enzyme inhibitors are of great significance for the treatment of certain major diseases. One of the most prominent features of natural products is their complex and diverse structures, which often compliments the synthetic capabilities of medicinal chemistry. Considering the biosynthetic processes of natural molecules in organisms, they exhibit higher similarity and binding potential with biological structures, enabling them to serve as ligands for various enzymes and receptors. In this review, we summarized a total of 226 novel natural products with enzyme inhibitory activity published in 49 articles over the past three years (2022-2024). These natural products (including terpenes, alkaloids, flavonoids, phenylpropanoids, polyketides, peptides, anthraquinones, etc.) are derived from plants, microorganisms, and marine organisms. We also discuss some synthetic analogs, with a focus on their structures and biological activities. This review provides useful information for the research and development of novel enzyme inhibitors.
Collapse
Affiliation(s)
- Chengqian Pan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China; Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
2
|
Morita N, Yoshikawa S, Ota E, Yamaguchi J. Rh-Catalyzed Synthesis of Isobenzofurans via Donor/Donor-Type Metal Carbenoids and Their [4 + 2] Cycloaddition. J Org Chem 2025; 90:5986-5999. [PMID: 40253715 DOI: 10.1021/acs.joc.5c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
A rhodium-catalyzed synthesis of isobenzofurans via donor- and donor-type metal carbenoids has been developed. Nosylhydrazones were used as carbene precursors, generating rhodium carbenoid species under basic conditions. These intermediates underwent intramolecular cyclization with ester groups to afford isobenzofurans, which subsequently participated in a highly endo-selective [4 + 2] cycloaddition with maleimides and other dienophiles. The reaction exhibited a broad substrate scope, accommodating various ester and aryl substituents while maintaining excellent regio- and stereoselectivity. Mechanistic studies, including control experiments, NMR analysis, and computational calculations, revealed that the reaction proceeds through a rhodium carbenoid intermediate, leading to the formation of isobenzofuran prior to cycloaddition. The endo-selectivity was found to originate from the difference in activation energies between the transition states, as supported by computational studies. Additionally, the isolation of the diazo intermediate and its direct conversion to isobenzofuran confirmed the stepwise nature of the transformation. This study expands the utility of donor- and donor-type carbenoids in organic synthesis, demonstrating their effectiveness in constructing highly reactive isobenzofurans under mild conditions.
Collapse
Affiliation(s)
- Naoki Morita
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Shinnosuke Yoshikawa
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Eisuke Ota
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
3
|
Nie Q, Sun C, Liu S, Li Q, Zotova M, Zhu T, Gao X. Enzymatic Ring Contraction for the Biosynthesis of Sulfur-Containing Cyclopentachromone. J Am Chem Soc 2025; 147:548-556. [PMID: 39680614 DOI: 10.1021/jacs.4c11906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Cyclopentachromone, distinguished by its 6/6/5 heterotricyclic ring structure, is a key building block in many bioactive natural products, yet its enzymatic origin remains unclear. We identified a new class of cyclopentachromone-containing compounds, termed isochromosulfines, characterized by unique C-S bonds. A distinct FAD-dependent monooxygenase, IscL, was identified to catalyze the formation of the 6/6/5 cyclopentadiene intermediate, 2S-remisporine A, from a 6/6/6 xanthone precursor via benzene ring contraction. The high reactivity of 2S-remisporine A further promotes a spontaneous thiol-Michael addition reaction with thiol-containing compounds, forming the C-S bond in isochromosulfines. Additionally, we demonstrate that IscL homologues mediate a bifurcated pathway of benzene ring modification in the xanthone intermediate, leading to either ring contraction or cleavage, which is determined by a critical residue at position 230 to be phenylalanine or tyrosine. Our findings highlight the pivotal role of IscL in forming the 6/6/5 cyclopentachromone scaffold and offer deep insights into its catalytic mechanism. Our work lays the foundation for genome mining of cyclopentachromone-containing compounds and shows the potential application of IscL in biocatalysis.
Collapse
Affiliation(s)
- Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Chunxiao Sun
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Shuai Liu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Qiang Li
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Maria Zotova
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
4
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2022. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:399-414. [PMID: 38151899 DOI: 10.1080/10286020.2023.2288939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
The new natural products reported in 2022 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2022 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Wu B, Xu C, Chen J, Chen G. Rhizoaspergillin A and Rhizoaspergillinol A, including a Unique Orsellinic Acid-Ribose-Pyridazinone- N-Oxide Hybrid, from the Mangrove Endophytic Fungus Aspergillus sp. A1E3. Mar Drugs 2023; 21:598. [PMID: 37999422 PMCID: PMC10671915 DOI: 10.3390/md21110598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Two new compounds, named rhizoaspergillin A (1) and rhizoaspergillinol A (2), were isolated from the mangrove endophytic fungus Aspergillus sp. A1E3, associated with the fruit of Rhizophora mucronata, together with averufanin (3). The planar structures and absolute configurations of rhizoaspergillinol A (2) and averufanin (3) were established by extensive NMR investigations and quantum-chemical electronic circular dichroism (ECD) calculations. Most notably, the constitution and absolute configuration of rhizoaspergillin A (1) were unambiguously determined by single-crystal X-ray diffraction analysis of its tri-pivaloyl derivative 4, conducted with Cu Kα radiation, whereas those of averufanin (3) were first clarified by quantum-chemical ECD calculations. Rhizoaspergillin A is the first orsellinic acid-ribose-pyridazinone-N-oxide hybrid containing a unique β-oxo-2,3-dihydropyridazine 1-oxide moiety, whereas rhizoaspergillinol A (2) and averufanin (3) are sterigmatocystin and anthraquinone derivatives, respectively. From the perspective of biosynthesis, rhizoaspergillin A (1) could be originated from the combined assembly of three building blocks, viz., orsellinic acid, β-D-ribofuranose, and L-glutamine. It is an unprecedented alkaloid-N-oxide involving biosynthetic pathways of polyketides, pentose, and amino acids. In addition, rhizoaspergillinol A (2) exhibited potent antiproliferative activity against four cancer cell lines. It could dose-dependently induce G2/M phase arrest in HepG2 cells.
Collapse
Affiliation(s)
- Binbin Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
| | - Chenglong Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China;
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China;
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
| |
Collapse
|
6
|
Krstić G, Saidu MB, Barta A, Vágvölgyi M, Ali H, Zupkó I, Berkecz R, Gallah US, Rédei D, Hohmann J. Anticancer Meroterpenoids from Centrapalus pauciflorus leaves: Chromone- and 2,4-Chromadione-Monoterpene Derivatives. ACS OMEGA 2023; 8:31389-31398. [PMID: 37663471 PMCID: PMC10468835 DOI: 10.1021/acsomega.3c03884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Eight previously undescribed chromones, named pauciflorins F-M and two 5-methyl-2,4-chromadione derivatives named as pauciflorins N and O, were isolated from the methanol extract of the leaves of Centrapalus pauciflorus (Willd.) H.Rob. together with the known (+)-spiro-ethuliacoumarin. The structures were determined via extensive spectroscopic analyses, including HRESIMS, 1D NMR (1H, 13C JMOD), and 2D NMR (HSQC, HMBC, 1H-1H COSY, and NOESY) experiments. Through an MTT assay, seven isolated compounds were tested for their antiproliferative properties against human adherent breast (MCF-7, MDA-MB-231), cervical (HeLa, SiHa), and ovarian (A2780) cancer cell lines. Pauciflorin F was effective against MCF-7 breast cancer cells, its activity (IC50 5.78 μM) was comparable to that of the reference agent cisplatin (IC50 5.78 μM).
Collapse
Affiliation(s)
- Gordana Krstić
- Department
of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
- University
of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Muhammad Bello Saidu
- Department
of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Anita Barta
- Department
of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Máté Vágvölgyi
- Department
of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Hazhmat Ali
- Institute
of Pharmacodynamics and Biopharmacy, University
of Szeged, Eötvös
u. 6, 6720 Szeged, Hungary
| | - István Zupkó
- Institute
of Pharmacodynamics and Biopharmacy, University
of Szeged, Eötvös
u. 6, 6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute
of Pharmaceutical Analysis, University of
Szeged, Somogyi u. 4, 6720 Szeged, Hungary
| | - Umar Shehu Gallah
- Bioresource
Department, National Research Institute
for Chemical Technology (NARICT), Zaria 1052, Nigeria
| | - Dóra Rédei
- Department
of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Judit Hohmann
- Department
of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
- ELKH-USZ
Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| |
Collapse
|
7
|
Abstract
A personal selection of 32 recent papers is presented, covering various aspects of current developments in bioorganic chemistry and novel natural products, such as daphnepapytone A from Daphne papyracea.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|