1
|
Zuo W, Zheng R, Huang Y, Geng X, Zuo L, Wang L. Oxygen Migration-Defluorination Strategy Enables the Aminocarbonylation of Enaminones with o-Aminobenzamides and CF 2Br 2. Org Lett 2025; 27:2274-2278. [PMID: 39994848 DOI: 10.1021/acs.orglett.5c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The development of different concept approaches and user-friendly carbonyl surrogates for aminocarbonylation is highly desirable. Herein, we report the photocatalytic aminocarbonylation of enaminones with easily available o-aminobenzamides and CF2Br2 through an oxygen migration-defluorination strategy. The reaction features switchable transformation for the construction of carbamoyl-substituted enaminones and enol products and allows the expedient synthesis of fully substituted maleimides under mild reaction conditions.
Collapse
Affiliation(s)
- Wanqing Zuo
- Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Renhua Zheng
- Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Yinghong Huang
- Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Xiao Geng
- Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Lingling Zuo
- Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Lei Wang
- Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| |
Collapse
|
2
|
Jayaram A, Seenivasan VT, Govindan K, Liu YM, Chen NQ, Yeh TW, Venkatachalam G, Li CH, Leung TF, Lin WY. Base-promoted triple cleavage of CCl 2Br: a direct one-pot synthesis of unsymmetrical oxalamide derivatives. Chem Commun (Camb) 2024; 60:3079-3082. [PMID: 38406884 DOI: 10.1039/d4cc00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We present a novel, eco-friendly and one-pot approach for synthesizing unsymmetrical oxalamides with the aid of dichloroacetamide and amine/amides in the presence of CBr4 in a basic medium. The use of water as a potent supplement for the oxygen atom source and the detailed mechanism have been disclosed. Moreover, the protocol involves triple cleavage of CCl2Br and the formation of new C-O/C-N bonds, with the advantage of achieving selective bromination using CBr4 with good to excellent yield under mild conditions. The method also demonstrates promise for industrial use, as proven by its effective implementation in gram-scale synthesis conducted in a batch process, along with its utilization in a continuous-flow system.
Collapse
Affiliation(s)
- Alageswaran Jayaram
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | | | - Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Yu-Ming Liu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Nian-Qi Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Ting-Wei Yeh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Gokulakannan Venkatachalam
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Chien-Hung Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Tsz-Fai Leung
- Department of Chemistry, National Sun Yat-sen University, Taiwan, Republic of China
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, Republic of China
- Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Taiwan, Republic of China
| |
Collapse
|
3
|
Zhang J, Zhu W, Xiao D, Zhou P, Huang L, Liu W. TBHP Mediated C-N Bond Cleavage of Tertiary Amines toward the Synthesis of Oxalamides and α,β-Epoxy Amides. J Org Chem 2024; 89:1524-1533. [PMID: 38207216 DOI: 10.1021/acs.joc.3c02119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
An efficient and convenient method for the synthesis of oxalamides by the reaction of β-ketoamides with tertiary amines and TBHP was developed. A variety of β-ketoamides and tertiary amines substrates were well-tolerated in this transformation. Based on the control experiments, a plausible mechanism for this reaction was proposed that involved the tandem oxidation/amination process. In addition, α,β-epoxy amides could be obtained by adjusting the reaction conditions.
Collapse
Affiliation(s)
- Jiantao Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, P. R. China
| | - Weiming Zhu
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, P. R. China
| | - Duoduo Xiao
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, P. R. China
| | - Peng Zhou
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, P. R. China
| | - Liangbin Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Weibing Liu
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, P. R. China
| |
Collapse
|
4
|
Kishor K, Prabhakar NS, Singh KN. Visible-Light-Mediated Synthesis of α-Ketoamides via Oxidative Amination of 2-Bromoacetophenones Using Eosin Y as a Photoredox Catalyst. Chem Asian J 2023; 18:e202300669. [PMID: 37642246 DOI: 10.1002/asia.202300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
An oxidative amination of 2-bromoacetophenones has been accomplished to provide α-ketoamides by using photoredox catalysis with air as oxidant. The reactants are readily accessible, and the method is endowed with broad substrate scope and good functional group tolerance. The practicality of the approach is also shown by a gram-scale reaction.
Collapse
Affiliation(s)
- Kaushal Kishor
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Sharma Prabhakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
5
|
Sun B, Li PX, Jiang Y, Yang LL, Huang PY, Shen RP, Chen MJ, Wang JY, Jin C. Visible-Light-Induced Desaturative β-Alkoxyoxalylation of N-Aryl Cyclic Amines with Difluoromethyl Bromides and H 2O Via a Triple Cleavage Process. Org Lett 2023; 25:6773-6778. [PMID: 37655856 DOI: 10.1021/acs.orglett.3c02770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A visible-light-driven desaturative β-alkoxyoxalyation of N-aryl cyclic amines with difluoromethyl bromides and H2O has been reported. This tandem reaction is triggered by homolysis of the C-Br bond to produce the difuoroalkyl radical, which undergoes the subsequent defluorinated β-alkoxyoxalylation cascades to afford a wide range of β-ketoester/ketoamides substituted enamines. The prominent feature of this reaction contains photocatalyst-free, transition-metal free, and mild conditions. The 18O labeling experiment disclosed that H2O is the oxygen source of the carbonyl unit.
Collapse
Affiliation(s)
- Bin Sun
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pei-Xuan Li
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu Jiang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lu-Lu Yang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pan-Yi Huang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Run-Pu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, P. R. China
| | - Mao-Jie Chen
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jia-Yang Wang
- School of Life Sciences, Huzhou University, Huzhou 313002, Zhejiang, P. R. China
| | - Can Jin
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
6
|
Sun B, Zhuang X, Yin J, Zhang K, Zhao H, Jin C. Photoredox-Catalyzed Tandem Radical Cyclization/Hydroxylation for the Synthesis of 4-Hydroxyalkyl-3,3-difluoro-γ-lactams. J Org Chem 2022; 87:14177-14185. [PMID: 36173277 DOI: 10.1021/acs.joc.2c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The photoredox-catalyzed radical difluoroalkylation/cyclization/hydroxylation cascade reaction of various 2-bromo-2,2-difluoro-N-arylacetamides containing unactivated alkene moieties has been developed, providing green and efficient access to various 4-hydroxyalkyl-3,3-difluoro-γ-lactams. Control experiments confirmed a radical process, and inexpensive air acted as the sole hydroxy resource. In addition, the highlights of this protocol include good tolerance for a variety functional groups, lower photocatalyst loading, and ease of operation.
Collapse
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jieli Yin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kesheng Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Haiyun Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.,College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|