1
|
Nagayasu S, Togo H, Nagai K, Kobayashi S. Skeletal Isomerization of Ergosterol-5,8-Peroxide Leading to the Discovery of Unprecedented Ergostanes and Collective Syntheses of 5,6-Epoxysterols and (+)-Sarocladione. Chemistry 2025; 31:e202403431. [PMID: 39470122 DOI: 10.1002/chem.202403431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Skeletal isomerization of ergosterol peroxide, a primary oxidation product of ergosterol, was investigated under thermal and iron(II)-mediated conditions. Thermal isomerization resulted in not only the isolation of the predicted 7-hydroxy-5,6-epoxides but also the discovery of the unprecedented 7/9/5-ring-fused ergostane for the first time. The iron(II)-mediated isomerization proceeded at ambient temperature, resulting in the formation of the expected 5,6-epoxysterols and a ring-opened bicyclic diketone. The diketone was further converted into novel ergostane under thermal conditions and into (+)-sarocladione under acidic conditions. All transformations from ergosterol to sarocladione, including the isolation of the unstable diketone intermediate, were achieved at ambient temperature, confirming the biosynthetic pathway of sarocladione. Several mushroom ingredients with a 5,6-epoxy group were synthesized stereoselectively from the isomerization products, leading to the confirmation or revision of the structures of natural products. The β-amyloid aggregation inhibitory activity of synthetic sterols was evaluated for the first time to gain insights into the potential for dementia prevention. This study is valuable both for supplying rare sterols found in mushrooms for biological studies and for shedding light on the oxidative metabolic pathways of ergosterol.
Collapse
Affiliation(s)
- Saki Nagayasu
- Department of Applied Chemistry, Faculty of Engineering and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Hinata Togo
- Department of Applied Chemistry, Faculty of Engineering and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Kaoru Nagai
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Shoji Kobayashi
- Department of Applied Chemistry, Faculty of Engineering and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
2
|
Ding YF, Liu LY, Tang J, Fan DX, Ji YY, Lin HW, Wang J, Hong LL. Hipposponols A and B, two new 9, 11-secosterols from the marine sponge Hippospongia lachne de Laubenfels. Nat Prod Res 2024; 38:2562-2568. [PMID: 36905167 DOI: 10.1080/14786419.2023.2188588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Two new 9,11-secosterols, hipposponols A (1) and B (2), together with five known analogues, aplidiasterol B (3), (3β,5α,6β)-3,5,6-triol-cholest-7-ene (4), (3β,5α,6β,22E)-3,5,6-triol-ergosta-7,22-diene (5), and one pair of inseparable C-24 epimers of (3β,5α,6β,22E)-3,5,6-triol-stigmasta-7,22-diene (6/7), were isolated from the marine sponge Hippospongia lachne de Laubenfels. The structures of isolated compounds were extensively elucidated based on HRESIMS and NMR data. Compounds 2 - 5 showed cytotoxicity against PC9 cells with IC50 values ranging from 34.1 ± 0.9 to 38.9 ± 1.0 µM and compound 4 displayed cytotoxicity against MCF-7 cells with IC50 value of 39.0 ± 0.4 µM.
Collapse
Affiliation(s)
- Ya-Fang Ding
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Yun Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Tang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Xue Fan
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan-Yuan Ji
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Li-Li Hong
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
4
|
Xia F, Lin LS, Li YL, Yang L, Ye YS, Li X, Zhao JH, Deng J, Xu G. Discovery and Bioinspired Synthesis of Salpratone A. J Org Chem 2024; 89:1858-1863. [PMID: 38215471 DOI: 10.1021/acs.joc.3c02584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Salpratone A (1), a novel abietane diterpenoid containing a unique cis-fused A/B ring, was isolated from Salvia prattii. Bioactivity studies showed that 1 has potent activity in inhibiting platelet aggregation induced by multiple agonists as well as antithrombotic efficacy in the FeCl3-induced rat in vivo thrombosis model. Furthermore, a bioinspired synthesis of 1 from the abundant natural product ferruginol was achieved in 6 steps with a 22% overall yield. The key steps include a stereoselective allyl oxidation and a subsequent regioselective Meinwald rearrangement.
Collapse
Affiliation(s)
- Fan Xia
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li-Sha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan-Ling Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Nature Products, Kunming Medical University, Kunming 650500, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan-Song Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xian Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Nature Products, Kunming Medical University, Kunming 650500, China
| | - Jin-Hua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430000, China
| | - Jun Deng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
5
|
Wu YC, Xu GS, Li HJ, Bian YJ, Qi ZQ, Wu YC. Divergent and Stereoselective Synthesis of Ustusal A, (-)-Albrassitriol, and Elegansin D. J Org Chem 2023; 88:16511-16519. [PMID: 37972539 DOI: 10.1021/acs.joc.3c01992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The first synthesis of ustusal A as well as expeditious access to (-)-albrassitriol is described as featuring a singlet oxygen [4 + 2] cycloaddition, achieving the desired stereoselectivity for the 1,4-cis-hydroxyl groups. Transformation of (+)-sclareolide to III followed by a key Horner-Wadsworth-Emmons (HWE) reaction and stereospecific allylic oxidation facilitated the first synthesis of elegansin D. The biological evaluation of these natural products together with seven elegansin D analogues was performed, among which several elegansin D analogues exhibited potential anticancer activity against liver cancer HepG2 cells (IC50 = 11.99-25.58 μM) with low cytotoxicity on normal liver HL7702 cells (IC50 > 100 μM).
Collapse
Affiliation(s)
- Yue-Cheng Wu
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, P. R. China
| | - Guang-Sen Xu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, P. R. China
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Ya-Jing Bian
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Zhong-Quan Qi
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, P. R. China
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China
| |
Collapse
|
6
|
Ohyoshi T, Iizumi H, Hosono S, Tano H, Kigoshi H. Total Synthesis of Aplysiasecosterols A and B, Two Marine 9,11-Secosteroids. Org Lett 2023. [PMID: 37314938 DOI: 10.1021/acs.orglett.3c01692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The total synthesis of aplysiasecosterols A and B has been accomplished. Key features of the synthesis include the Suzuki-Miyaura coupling of each AB-ring segment and common D-ring segment. The AB-ring segment of aplysiasecosterol B was synthesized by Shi asymmetric epoxidation as a key reaction. The common D-ring segment was constructed by stereoselective hydrogenation and Sharpless asymmetric dihydroxylation as key reactions. This late-stage convergent synthesis, which has rarely been reported in secosteroid synthesis, can be adapted to many 9,11-secosteroids.
Collapse
Affiliation(s)
- Takayuki Ohyoshi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hidetada Iizumi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Shu Hosono
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hikaru Tano
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hideo Kigoshi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|