1
|
Šlachtová V, Motornov V, Beier P, Vrabel M. Bioorthogonal Cycloadditions of C3-Trifluoromethylated 1,2,4-Triazines with trans-Cyclooctenes. Chemistry 2024; 30:e202400839. [PMID: 38739300 DOI: 10.1002/chem.202400839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
1,2,4-triazines are a valuable class of heterodienes that can be employed in inverse electron-demand Diels-Alder reactions. However, their broader application in bioorthogonal chemistry is limited due to their low reactivity. This article focuses on 3-(trifluoromethyl)-1,2,4-triazines, which can be efficiently prepared in a one-pot reaction from NH-1,2,3-triazoles. These triazines are highly reactive in reactions with strained cyclooctenes, giving second-order rate constants as high as 230 M-1 s-1. Despite their high reactivity, the compounds remain sufficiently stable under biologically relevant conditions. We show that some of the compounds are fluorogenic, a property of potential use in bioimaging. In addition, we demonstrate the successful application of the triazines in labeling model biomolecules. Our work shows that the reactivity of 1,2,4-triazines can be enhanced by the 3-CF3-substitution, which we consider an important step toward the wider use of this promising class of reagents.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Vladimir Motornov
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| |
Collapse
|
2
|
Wu W, Zhang Z, Li J, Xia J, Han X, Weng Z. Copper Loading-Controlled Selective Synthesis of 2,5-Bis(trifluoromethyl) and Monotrifluoromethyl-Substituted Oxazoles. J Org Chem 2024; 89:589-598. [PMID: 38149374 DOI: 10.1021/acs.joc.3c02315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
A general domino annulation reaction of sulfonylmethyl isocyanide with trifluoroacetic anhydride in the presence of copper chloride as an additive is developed. The reaction affords 2,5-bis(trifluoromethyl)oxazoles in modest to good yields under mild conditions. A wide variety of sulfonylmethyl isocyanide and perfluorocarboxylic anhydride substrates are amenable to this transformation. Under a higher copper salt loading conditions, the reaction led to the formation of monotrifluoromethyl-substituted oxazole product.
Collapse
Affiliation(s)
- Wei Wu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zipeng Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jialong Li
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Jianrong Xia
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Xiaoyan Han
- Testing and Analysis Center, Soochow University, Suzhou 215123, China
| | - Zhiqiang Weng
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
3
|
Motornov V, Beier P. NH-1,2,3-triazoles as versatile building blocks in denitrogenative transformations. RSC Adv 2023; 13:34646-34651. [PMID: 38024996 PMCID: PMC10680141 DOI: 10.1039/d3ra06045d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
The utilization of NH-1,2,3-triazoles as easily accessible building blocks in denitrogenative ring cleavage transformations with electrophiles to provide multifunctionalized nitrogen heterocycles and N-alkenyl compounds is reviewed. Leveraging the ready availability of NH-1,2,3-triazoles, these processes provide a convenient route to a range of pharmaceutically relevant heterocyclic cores and N-alkenyl compounds. The synthetic usefulness of in situ acylated NH-1,2,3-triazoles as viable alternatives to widely explored N-sulfonyl-1,2,3-triazoles in ring cleavage processes is highlighted.
Collapse
Affiliation(s)
- Vladimir Motornov
- Institute of Orgranic Chemistry and Biochemistry, Academy of Sciences Flemingovo nám. 2 160 00 Prague 6 Czech Republic
| | - Petr Beier
- Institute of Orgranic Chemistry and Biochemistry, Academy of Sciences Flemingovo nám. 2 160 00 Prague 6 Czech Republic
| |
Collapse
|
4
|
Motornov V, Beier P. Synthesis of N-vinyl isothiocyanates and carbamates by the cleavage of NH-1,2,3-triazoles with one-carbon electrophiles. Org Biomol Chem 2023; 21:1143-1147. [PMID: 36647812 DOI: 10.1039/d2ob02115c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metal-free cascade reaction of NH-1,2,3-triazoles with one-carbon electrophiles, such as thiophosgene and triphosgene, led to N-vinylated ring cleavage products. Using this approach the synthesis of N-vinylisothiocyanates from NH-triazoles and thiophosgene was achieved. A variety of multifunctional compounds, such as N-vinylcarbamates, unsymmetrical vinylureas, carbamothioates, etc. was prepared by a one-pot method from NH-triazoles, triphosgene and nucleophiles.
Collapse
Affiliation(s)
- Vladimir Motornov
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| |
Collapse
|
5
|
Singh R, Prakash C. Microwave-assisted Synthesis of Fluorinated Heterocycles. CURRENT GREEN CHEMISTRY 2022; 9:145-161. [DOI: 10.2174/2213346110666221223140653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Abstract:
The diverse biological applications of fluorinated heterocycles make them crucial chemical compounds. Several synthetic processes have been developed for their synthesis. Microwave-assisted synthesis has emerged as an important technique for generating fluorinated heterocycles in an eco-friendly and energy-efficient manner. It provides several benefits like less reaction time, high reaction yield, homogeneous heat distribution leading to lower side reaction, and better control of reaction temperature. Recently there has been significant progress in microwave use for heterocycle synthesis. This article discusses the applications of microwave irradiation in the synthesis of oxygen- and nitrogen-containing fluorinated heterocycles.
Collapse
Affiliation(s)
- Ram Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Chandra Prakash
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
- Centre for Fire, Explosive and
Environment Safety, DRDO, Timarpur, Delhi - 110034, India
| |
Collapse
|
6
|
Silver-Catalyzed Cascade Cyclization of Amino-NH-1,2,3-Triazoles with 2-Alkynylbenzaldehydes: An Access to Pentacyclic Fused Triazoles. Molecules 2022; 27:molecules27217567. [PMID: 36364393 PMCID: PMC9655256 DOI: 10.3390/molecules27217567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
An operationally simple Ag(I)-catalyzed approach for the synthesis of isoquinoline and quinazoline fused 1,2,3-triazoles was developed by a condensation and amination cyclization cascade of amino-NH-1,2,3-triazoles with 2-alkynylbenzaldehydes involving three new C-N bond formations in one manipulation, in which the group of -NH of the triazole ring serves as a nucleophile to form the quinazoline skeleton. The efficient protocol can be applied to a variety of substrates containing a range of functional groups, delivering novel pentacyclic fused 1,2,3-triazoles in good-to-excellent yields.
Collapse
|
7
|
Teng Y, Fang T, Lin Z, Qin L, Jiang M, Wu W, You Y, Weng Z. Ring-expansion reaction for the synthesis of 2-(trifluoromethyl)oxazoles and 3-(trifluoromethyl)-1,2,4-triazines. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Motornov V, Beier P. One-pot synthesis of 4-substituted 2-fluoroalkyloxazoles from NH-1,2,3-triazoles and fluoroalkylated acid anhydrides. NEW J CHEM 2022. [DOI: 10.1039/d2nj02461f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient one-pot method for the synthesis of 2-fluoroalkyloxazoles from 4-substituted NH-1,2,3-triazoles, fluorinated anhydrides and triethylamine was developed.
Collapse
Affiliation(s)
- Vladimir Motornov
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10, Praha, Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10, Praha, Czech Republic
| |
Collapse
|