1
|
Laze L, Gonzalez-Gomez JC, Bosque I. Electrochemical heteroarylation and amidation of alkanes using activated glassy carbon electrodes without mediators. Commun Chem 2025; 8:94. [PMID: 40158022 PMCID: PMC11954948 DOI: 10.1038/s42004-025-01494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
The functionalization of challenging unactivated C(sp3)-H bonds was achieved electrocatalytically via hydrogen atom transfer and without mediators. This was possible through the sole activation of the surface of the Glassy Carbon Electrode (GCE) in an electrochemical fashion using a phosphate buffer. This activation produced oxygenated functional groups on the surface, capable of abstracting these hydrogen atoms from C(sp3)-H of alkanes. Minisci and Ritter-type reactions were achieved using this procedure. Extensive characterization of the activated GCE (AGCE) and preliminary mechanistic studies allow us to propose plausible reaction mechanisms. Furthermore, a regular battery can be used within this protocol to achieve the desired substituted alkanes under inexpensive and user-friendly conditions.
Collapse
Grants
- CIAICO/2022/017 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- SEJIGENT/2021/005 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- MCIN/AEI and the “European Union NextGenerationEU” for the Grant “Consolidación Investigadora” (CNS2022-135161).
Collapse
Affiliation(s)
- Loris Laze
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| | - Jose C Gonzalez-Gomez
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain.
| | - Irene Bosque
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain.
| |
Collapse
|
2
|
Zhang X, Chen XX, Li ZH, Lin GQ, He ZT. Stereoselective P(III)-Glycosylation for the Preparation of Phosphinated Sugars. Angew Chem Int Ed Engl 2025; 64:e202420355. [PMID: 39639578 DOI: 10.1002/anie.202420355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Most of the reported work focus on the development of O-, N-, C- and S-glycosylation methods. However, no study explores P(III)-glycosylation reaction. Herein we describe a convenient protocol to realize P(III)-glycosylation process. A simple β-phosphino ester is adopted as P(III)-transfer reagent for this new type of glycosylation via a nucleophilic substitution and release strategy. Diverse phosphine units are introduced to the anomeric center of various sugars efficiently and with excellent stereoselectivity. The value of this method is showcased by the prepared P(III)-sugars as novel linkers in bioactive molecule conjugation, new chiral ligands in metal-catalyzed asymmetric allylic substitutions and organocatalysts. Preliminary mechanistic studies corroborated the designed P(III)-transfer process.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xian-Xiao Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zi-Han Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guo-Qiang Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
3
|
Karan A, Ghosh S, Hajra A. Manganese-Catalyzed Electrochemical Amination of Activated Alkenes. Chem Asian J 2025:e202401935. [PMID: 39835819 DOI: 10.1002/asia.202401935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 01/22/2025]
Abstract
We have unveiled a new manganese-catalyzed electrochemical amination method to transform activated alkenes into a diverse array of vinyl amines harnessing sodium azide as the aminating reagent. The strategy claims notable versatility by accommodating a broad spectrum of substrates, demonstrating good compatibility with diverse functional groups, as well as delivering a moderate to good range of yields. The successful late-stage functionalization further underscores its practical utility. A radical mechanism is proposed based on experimental mechanistic studies.
Collapse
Affiliation(s)
- Avijit Karan
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| |
Collapse
|
4
|
Khandelia T, Panigrahi P, Ghosh S, Mandal R, Doley B, Patel BK. Solvent Dictated Organic Transformations. Chem Asian J 2024; 19:e202400603. [PMID: 39509646 DOI: 10.1002/asia.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Indexed: 11/15/2024]
Abstract
Solvent plays an important role in many chemical reactions. The C-H activation has been one of the most powerful tools in organic synthesis. These reactions are often assisted by solvents which not only provide a medium for the chemical reactions but also facilitate reaching to the product stage. The solvent helps the reaction profile both chemically and energetically to reach the targeted product. Organic transformations via C-H activation from the solvent assistance perspective has been discussed in this review. Various solvents such as tetrahydrofuran (THF), MeCN, dichloromethane (DCM), dimethoxyethane (DME), 1,2-dichloroethane (1,2-DCE), dimethylformamide (DMF), dimethylsulfoxide (DMSO), isopropyl nitrile (iPrCN), 1,4-dioxane, AcOH, trifluoroacetic acid (TFA), Ac2O, PhCF3, chloroform (CHCl3), H2O, N-methylpyrrolidone (NMP), acetone, methyl tert-butyl ether (MTBE), toluene, p-xylene, alcohols, MeOH, 1,1,1-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), tert-amyl alcohol and their roles are discussed. The exclusive role of the solvent in various transformations has been deliberated by highlighting the substrate scope, along with the proposed mechanisms. For easy classification, the review has been divided into three parts: (i) solvent-switched divergent C-H activation; (ii) C-H bond activation with solvent as the coupling reagent, and (iii) C-H activation with solvent caging and solvent-assisted electron donor acceptor (EDA) complex formation and autocatalysis.
Collapse
Affiliation(s)
- Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | | | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Barlina Doley
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
5
|
Hawkins BC, Chalker JM, Coote ML, Bissember AC. Electrochemically Generated Carbocations in Organic Synthesis. Angew Chem Int Ed Engl 2024; 63:e202407207. [PMID: 39075778 DOI: 10.1002/anie.202407207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
This Minireview examines a selection of case studies that showcase distinctive and enabling electrochemical approaches that have allowed for the generation and reaction of carbocation intermediates under mild conditions. Particular emphasis is placed on the progress that has been made in this area of organic synthesis and polymer chemistry over the past decade.
Collapse
Affiliation(s)
- Bill C Hawkins
- Department of Chemistry, University of Otago, 9054, Dunedin, Otago, New Zealand
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, Flinders University, 5042, Adelaide, South Australia, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, 5042, Adelaide, South Australia, Australia
| | - Alex C Bissember
- School of Natural Sciences-Chemistry, University of Tasmania, 7001, Hobart, Tasmania, Australia
| |
Collapse
|
6
|
Stewart G, Rapala C, Malapit CA. Electrochemical Non-Directed Arene C-H Amination. ChemCatChem 2024; 16:e202400867. [PMID: 39544415 PMCID: PMC11562937 DOI: 10.1002/cctc.202400867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 11/17/2024]
Abstract
Electrosynthesis represents a dynamic field in organic chemistry for the development of important and selective reactions. Among the most interesting electrosynthetic transformations is the non-directed arene C-H amination. Despite increasing reports, the quest for a non-directed electrochemical arene C-H amination capable of accommodating a wide range of arenes and amines with high site-selectivity remains ongoing. Non-directed electrochemical C-H amination presents a metal-free, mild approach for synthesizing complex aminated compounds of interest in pharmaceuticals and natural products. This concept aims to introduce the concept of non-directed electrochemical C-H amination and provide an overview of the recent advances in the field as well as the current limitations and potential directions.
Collapse
Affiliation(s)
- Griffin Stewart
- Department of Chemistry, Northwestern University, Technological Institute, Evanston IL 60208
| | - Chris Rapala
- Department of Chemistry, Northwestern University, Technological Institute, Evanston IL 60208
| | - Christian A Malapit
- Department of Chemistry, Northwestern University, Technological Institute, Evanston IL 60208
| |
Collapse
|
7
|
Sun Z, Song C, Meng Y, Dou Y. Synthesis of 2,3-Benzobicyclo[3.3.1]non-2-enes via a Cascade of Domino Carbocation Migration/Interrupted Ritter Reaction and Dienone-Phenol Rearrangement. J Org Chem 2024; 89:14520-14526. [PMID: 39295074 DOI: 10.1021/acs.joc.4c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The 2,3-benzobicyclo[3.3.1]non-2-ene scaffold is a bridged backbone of many bioactive natural products. The development of a concise tactic toward this architecture is of keen interest and highly challenging. Herein, we disclose a novel cascade protocol for realizing this target. This approach relies on a domino sequence of carbocation rearrangement and Ritter reaction of the taiwaniaquinoid scaffold derivatives. A process of dienone-phenol rearrangement was postulated to be involved. Several potentially useful compounds with this intricate bridged ring were obtained in good overall yields (59-83%, over 2 steps).
Collapse
Affiliation(s)
- Zhiwei Sun
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chuanjun Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yonggang Meng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yingchao Dou
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
8
|
Ma Y, Liu C, Yang D, Fang Z, Huang W, Cheng R, Ye J. The developments of C-N bond formation via electrochemical Ritter-type reactions. Org Biomol Chem 2024; 22:7537-7548. [PMID: 39190317 DOI: 10.1039/d4ob01210k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
With the development of organic electrochemical synthesis, a series of notable achievements have been made in electrochemical Ritter amination reactions, which have enriched the methods available for constructing C-N bonds. In this review, electrochemical Ritter amination reactions are introduced based on the classification of reaction substrates, including olefins, aromatics, alkylbenzenes, and the less reported carboxylic acids, ketones, sulfides, and alkanes. The application of electrochemical technology to Ritter reactions has improved the harsh conditions of the traditional reactions, and extended the substrate scope and the structural diversity of the products. The application value of Ritter reactions in organic synthesis has also been further expanded.
Collapse
Affiliation(s)
- Yueyue Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Caixia Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Dali Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ziqi Fang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wenhui Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ruihua Cheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jinxing Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Dapkekar AB, Satyanarayana G. Electrochemically driven regioselective construction of 4-sulfenyl-isochromenones from o-alkynylbenzoates and diaryl disulfides. Org Biomol Chem 2024; 22:7111-7116. [PMID: 39140309 DOI: 10.1039/d4ob01137f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, we report a convenient and environmentally friendly electrochemical technique that enables the regioselective construction of 4-sulfenyl-1H-isochromen-1-ones using readily available precursors such as o-alkynyl benzoates and diaryl disulfides. This electrochemical process has been accomplished through constant current electrolysis in an undivided cell under external acid, catalyst, oxidant, or metal-free conditions. Owing to this protocol's mild reaction conditions, the products are obtained in good to very good yields, demonstrating a broad substrate scope and functional group tolerance.
Collapse
Affiliation(s)
- Anil Balajirao Dapkekar
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502284, India.
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
10
|
Kumar R, Dutt S, Banerjee P. Electrochemical oxidative C-C bond cleavage of methylenecyclopropanes with alcohols. Chem Commun (Camb) 2024; 60:4246-4249. [PMID: 38530248 DOI: 10.1039/d4cc00843j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Herein, an electrochemical approach toward the ring opening functionalization of methylenecyclopropanes (MCPs) via C-C bond cleavage in the presence of alcohols is reported. The methodology avoids the usage of external oxidants and shows good functional group tolerance. The mechanistic studies suggest that the reaction proceeds via direct single electron oxidation of the C-C bond of MCPs followed by ring opening to form the desired product.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Lab no. 406, S.S. Bhatnagar block, Punjab-140001, India.
| | - Shiv Dutt
- Department of Chemistry, Indian Institute of Technology Ropar, Lab no. 406, S.S. Bhatnagar block, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Lab no. 406, S.S. Bhatnagar block, Punjab-140001, India.
| |
Collapse
|
11
|
Meyrelles R, Schupp M, Maryasin B. Mechanistic Study on Selenium- and Sulfur-Mediated Isomerization of Hydroxamic Acids. Chemistry 2023; 29:e202302386. [PMID: 37769009 DOI: 10.1002/chem.202302386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
An in-depth computational study reveals the intriguing mechanism of the recently reported isomerization of hydroxamic acids into para-aminophenols catalyzed by phenylselenyl bromide under mild conditions. The computations not only align with the reported experimental data, effectively explaining observed phenomena such as para-selectivity but also shed light on crucial aspects of the reaction mechanism that establish limitations on the scope of the studied rearrangement. Additionally, a joint theoretical/experimental study was performed to examine the potency of the phenylsulfenyl bromide to mediate the reaction under the same conditions.
Collapse
Affiliation(s)
- Ricardo Meyrelles
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Manuel Schupp
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Boris Maryasin
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
| |
Collapse
|
12
|
Kumar R, Banerjee N, Kumar P, Banerjee P. Electrochemical Synthesis and Reactivity of Three-Membered Strained Carbo- and Heterocycles. Chemistry 2023; 29:e202301594. [PMID: 37436418 DOI: 10.1002/chem.202301594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
Three-membered carbocyclic and heterocyclic ring structures are versatile synthetic building blocks in organic synthesis with biological importance. Moreover, the inherent strain of these three-membered rings leads to their ring-opening functionalization through C->C, C->N, and C-O bond cleavage. Traditional synthesis and ring-opening methods for these molecules require the use of acid catalysts or transition metals. Recently, electro-organic synthesis has emerged as a powerful tool for initiating new chemical transformations. In this review, the synthetic and mechanistic aspects of electro-mediated synthesis and ring-opening functionalization of three-membered carbo- and heterocycles are highlighted.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Ropar Lab No. 406
| | - Nakshatra Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar Lab No. 406
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Technology Ropar Lab No. 406
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar Lab No. 406
| |
Collapse
|
13
|
Urbiña-Alvarez J, Rincón-Carvajal S, Gamba-Sánchez D. Ammonia surrogates in the synthesis of primary amines. Org Biomol Chem 2023; 21:7036-7051. [PMID: 37575051 DOI: 10.1039/d3ob01202f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Primary amines are derivatives of ammonia in which one hydrogen atom is replaced by an alkyl or aryl group. Ammonia serves as the primary nitrogen source in amination reactions, and its utilization in solution or as a pure gas has witnessed notable advancements. However, the use of gaseous ammonia remains problematic in academic laboratory settings, while employing aqueous ammonia poses challenges in highly water-sensitive transformations. Consequently, the search for alternative sources of ammonia has garnered considerable attention among the organic chemistry community. This comprehensive literature review focuses on the use of ammonia surrogates in amination reactions, irrespective of the resulting intermediate. The review emphasizes the formation of the C-N bond and underscores the importance of generating intermediate products that can be readily transformed into primary amines through well-established reactions.
Collapse
Affiliation(s)
- Julia Urbiña-Alvarez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| | - Sergio Rincón-Carvajal
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| |
Collapse
|
14
|
Mousa MA, Abdelrahman HH, Fahmy MA, Ebrahim DG, Moustafa AHE. Pure and doped carbon quantum dots as fluorescent probes for the detection of phenol compounds and antibiotics in aquariums. Sci Rep 2023; 13:12863. [PMID: 37553364 PMCID: PMC10409781 DOI: 10.1038/s41598-023-39490-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
The resulting antibiotic residue and organic chemicals from continuous climatic change, urbanization and increasing food demand have a detrimental impact on environmental and human health protection. So, we created a unique B, N-CQDs (Boron, Nitrogen doping carbon quantum dots) based fluorescent nanosensor to investigate novel sensing methodologies for the precise and concentrated identification of antibiotics and phenol derivatives substances to ensure that they are included in the permitted percentages. The as-prepared highly fluorescent B, N-CQDs had a limited range of sizes between 1 and 6 nm and average sizes of 2.5 nm in our study. The novel B, N-CQDs showed high sensitivity and selectivity for phenolic derivatives such as hydroquinone, resorcinol, and para aminophenol, as well as organic solvents such as hexane, with low detection limits of 0.05, 0.024, 0.032 and 0.013 µM respectively in an aqueous medium. The high fluorescence B, N-CQDs probes were examined using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and UV/VIS spectroscopy. The outcomes were compared to carbon quantum dots (CQDs) previously generated from Urea.
Collapse
Affiliation(s)
| | | | - Mamdouh A Fahmy
- Marine Chemistry Department, Environmental Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Dina G Ebrahim
- Marine Chemistry Department, Environmental Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | | |
Collapse
|
15
|
Capperucci A, Clemente M, Cenni A, Tanini D. Transition Metal-free Selenium-mediated Aryl Amines via Reduction of Nitroarenes. CHEMSUSCHEM 2023; 16:e202300086. [PMID: 36971384 DOI: 10.1002/cssc.202300086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 03/25/2023] [Indexed: 06/18/2023]
Abstract
A scalable and operationally simple on water seleno-mediated reduction of nitroarenes to the respective aryl amines with NaBH4 is described. The reaction proceeds under transition metal-free conditions and is promoted by the formation of Na2 Se, which is the effective reducing agent involved in the mechanism. This mechanistic information enabled the development of a mild NaBH4 -free protocol for the selective reduction of nitro derivatives bearing labile moieties, including nitrocarbonyl compounds. The selenium-containing aqueous phase can be successfully reused up to four reduction cycles, thus further improving the efficiency of the protocol disclosed.
Collapse
Affiliation(s)
- Antonella Capperucci
- Department of Chemistry 'Ugo Schiff', University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| | - Martina Clemente
- Department of Chemistry 'Ugo Schiff', University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| | - Alessio Cenni
- Department of Chemistry 'Ugo Schiff', University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| | - Damiano Tanini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
16
|
Xu Y, Li Q, Ye R, Xu B, Zhou X. Electrochemical Oxidative C-H Amination through a Ritter-Type Reaction. J Org Chem 2023. [PMID: 37262003 DOI: 10.1021/acs.joc.3c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A straightforward strategy for direct benzylic C-H bond amination via an electrochemical Ritter-type reaction is developed. The reaction demonstrates simpler and milder reaction conditions over the existing methods without extra mediator. Moderate to excellent yields up to 94% of the desired amide products were obtained with a broad substrate scope. The removal of the Ac group by a simple step can afford NH-free benzylic amines, providing a suitable approach for the late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Yiwen Xu
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| | - Qiang Li
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| | - Runyou Ye
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| | - Buyi Xu
- National Anti-Drug Laboratory Sichuan Regional Center, 36 Yunling Road, Chengdu, Sichuan 610200, P.R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| |
Collapse
|
17
|
Li Y, Huang Y, Li Z, Sun J. Recent Advances in Regioselective C-H Bond Functionalization of Free Phenols. Molecules 2023; 28:molecules28083397. [PMID: 37110630 PMCID: PMC10143084 DOI: 10.3390/molecules28083397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Phenols are important readily available synthetic building blocks and starting materials for organic synthetic transformations, which are widely found in agrochemicals, pharmaceuticals, and functional materials. The C-H functionalization of free phenols has proven to be an extremely useful tool in organic synthesis, which provides efficient increases in phenol molecular complexity. Therefore, approaches to functionalizing existing C-H bonds of free phenols have continuously attracted the attention of organic chemists. In this review, we summarize the current knowledge and recent advances in ortho-, meta-, and para-selective C-H functionalization of free phenols in the last five years.
Collapse
Affiliation(s)
- Yanan Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yekai Huang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Zhi Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jianan Sun
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
18
|
Kumar R, Taily IM, Banerjee P. Electrochemical sulfinylation of phenols with sulfides: a metal- and oxidant-free cross-coupling for the synthesis of aromatic sulfoxides. Chem Commun (Camb) 2023; 59:310-313. [PMID: 36507914 DOI: 10.1039/d2cc05207e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The site-selective C-H functionalization of arenes is of indisputable importance in organic chemistry. Herein, we have demonstrated an electrochemical regioselective oxidative cross-coupling towards the direct C(sp2)-H sulfinylation of phenols with sulfides under mild reaction conditions. The designed methodology furnished aryl sulfoxides in good to moderate yields under exogenous metal and oxidant-free conditions. Moreover, the exploitation of traceless electrons to carry out the tandem site-selective oxidative aryl chalcogenation is the striking feature of this methodology.
Collapse
Affiliation(s)
- Rakesh Kumar
- Lab no. 406, S.S. Bhatnagar block, Department of Chemistry, Indian Institute of Technology Ropar, Punjab-140001, India.
| | - Irshad Maajid Taily
- Lab no. 406, S.S. Bhatnagar block, Department of Chemistry, Indian Institute of Technology Ropar, Punjab-140001, India.
| | - Prabal Banerjee
- Lab no. 406, S.S. Bhatnagar block, Department of Chemistry, Indian Institute of Technology Ropar, Punjab-140001, India.
| |
Collapse
|
19
|
Strekalova S, Kononov A, Budnikova Y. Amino Acids in Electrochemical Metal-Free Benzylic C-H Amidation. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|