1
|
Xie P, Gao Y, Wu C, Cheng P, Zhang Y, Sun S. Visible-light-promoted azidation/arylation of unactivated alkenes with Togni-N 3via electron donor-acceptor complexes. Org Biomol Chem 2025; 23:1607-1611. [PMID: 39791462 DOI: 10.1039/d4ob01861c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A visible-light-promoted azidation/arylation of unactivated alkenes with Togni-N3 has been achieved, leading to a series of azidated pyrrolo[1,2-a]indoles under photocatalyst-free conditions. Notably, an EDA complex derived from the electron-rich indole derivatives and Togni-N3 served as the key intermediate in this reaction.
Collapse
Affiliation(s)
- Peng Xie
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Yue Gao
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Chenqi Wu
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Peidong Cheng
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yong Zhang
- Suzhou Industrial Park Institute of Services and Outsourcing, Suzhou, Jiangsu 215123, China.
| | - Song Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Roy M, Mallick I, Mahapatra M, Srimani D. Substituent-Dependent, Switchable Synthesis of Nonaromatic and Aromatic Heterocyclic Sulfones Using Visible Light. Org Lett 2024; 26:9357-9362. [PMID: 39441842 DOI: 10.1021/acs.orglett.4c03587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this Letter, we described a visible-light-induced switchable synthesis of nonaromatic and aromatic sulfonyl heterocycles. The product selectivity between 2,5-dihydropyrrole and pyrrole can be tuned by altering the substituent on the N atom of 1,6-diyne. We highlight the intricacy and efficiency of this approach in constructing molecular frameworks under mild conditions with a high functional group tolerance. This study elucidates the mechanism underlying product selectivity, highlighting its potential as a compelling alternative to traditional synthetic techniques.
Collapse
Affiliation(s)
- Mithu Roy
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Itu Mallick
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Manami Mahapatra
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
3
|
Huang AX, Li R, Lv QY, Yu B. Photocatalytic Sulfonylation: Innovations and Applications. Chemistry 2024; 30:e202402416. [PMID: 39003604 DOI: 10.1002/chem.202402416] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed. In this review, the recent advances in photocatalyzed sulfonylation have been reviewed since 2020, with a primary focus on discussing reaction design and mechanism.
Collapse
Affiliation(s)
- An-Xiang Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Qi-Yan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Shi Y, Fu C, Zheng J, Ma S. Photocatalytic Chemoselective Cyclic Oxysulfonylation of 2,3-Allenoic Acids. Org Lett 2024; 26:5182-5186. [PMID: 38847337 DOI: 10.1021/acs.orglett.4c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Photoinduced cyclization of 2,3-allenoic acids with sulfonyl chloride providing an efficient synthesis of 4-sulfonylated furan-2(5H)-ones under mild reaction conditions has been achieved. The reaction enjoys a high chemoselectivity and tolerates a wide range of functional groups. The catalytic cycle has been validated through control experiments, cyclic voltammetry studies, and Stern-Volmer quenching studies.
Collapse
Affiliation(s)
- Yaqi Shi
- Laboratory of Molecular Recognition and Synthesis Department of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis Department of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Jian Zheng
- Laboratory of Molecular Recognition and Synthesis Department of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis Department of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
He C, Wang Q, Zhou X, Yi L, Zhang Z, Zhang C, Xie H, Huang Q, Qiu G, Yang M. Photocatalytic Cyclization Cascades by Radical Relay toward Pyrrolo[1,2- a]indoles: Synthesis, Mechanism, and Application. J Org Chem 2024; 89:3509-3524. [PMID: 38362658 DOI: 10.1021/acs.joc.3c02959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A photocatalytic annulation cascade of unactivated N-alkene-linked indoles with Langlois' reagent by a radical relay is developed at room temperature under blue LED irradiation. The reaction afforded a series of tri/difluoromethylated pyrrolo[1,2-a]indoles in moderate to good yields. The DFT study suggests that the reaction is ascribed to a rhodamine 6G-induced cyclization cascade involving vinyl addition-radical relay and hydrogen-atom-abstraction (HAA) processes, and interestingly, pyrrolo[1,2-a]indoles are applied as fluorescent dyes into the fluorescence spectrum and live-cell imaging. This paper represents an initial example on photocatalytic cyclization cascades by radical relay and the HAA process.
Collapse
Affiliation(s)
- Chen He
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Qi Wang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Xiaoyang Zhou
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Lin Yi
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Zhiqiang Zhang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Chun Zhang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, second Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, China
| | - Qitong Huang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001 Zhejiang, China
| | - Min Yang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| |
Collapse
|
6
|
Yang C, Shi W, Tian J, Guo L, Zhao Y, Xia W. Visible-light-induced radical cascade cyclization: a catalyst-free synthetic approach to trifluoromethylated heterocycles. Beilstein J Org Chem 2024; 20:118-124. [PMID: 38264451 PMCID: PMC10804559 DOI: 10.3762/bjoc.20.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024] Open
Abstract
A visible-light-promoted research protocol for constructing dihydropyrido[1,2-a]indolone skeletons is herein described proceeding through a cascade cyclization mediated by trifluoromethyl radicals. This method allows the efficient synthesis of various indole derivatives without the need of photocatalysts or transition-metal catalysts. Mechanism experiments indicate that the process involves a radical chain process initiated by the homolysis of Umemoto's reagent. This straightforward method enables a rapid access to heterocycles containing a trifluoromethyl group.
Collapse
Affiliation(s)
- Chuan Yang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wei Shi
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jian Tian
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yating Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Shen K, Feng C, Liu Y, Yi D, Lin P, Li H, Gong Y, Wei S, Fu Q, Zhang Z. Visible light-enabled synthesis of phosphorylated indolizine and pyridoindole derivatives via HAT-mediated radical cascade cyclization. Org Biomol Chem 2023; 21:9341-9345. [PMID: 37987693 DOI: 10.1039/d3ob01675g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A visible light-enabled cascade cyclization strategy is disclosed with concomitant phosphorylation and heterocycle construction. It provides a novel and environmentally benign approach for accessing tetrahydroindolizine-containing phosphonates under metal-free conditions. Mechanistic studies revealed that phosphinoyl radicals were generated from H-phosphonates via a HAT process.
Collapse
Affiliation(s)
- Kunrong Shen
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Chuan Feng
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yilei Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Peng Lin
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Huifang Li
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yimou Gong
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Siping Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Qiang Fu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Zhijie Zhang
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
8
|
Wu Y, Liu H, Liu L, Yu JT. Metal-free polychloromethylation/cyclization of unactivated alkenes towards ring-fused tricyclic indolones and benzoimidazoles. Org Biomol Chem 2023; 21:7079-7084. [PMID: 37641965 DOI: 10.1039/d3ob01191g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Polychloromethylative cyclization of N-alkenyl indoles was developed under metal-free conditions to afford tricyclic pyridoindolones and pyrroloindolones in moderate to good yields. In the reaction, commercially available CHCl3 and CH2Cl2 were employed as tri- and dichloromethyl radical sources. Moreover, tri- and dichloromethylated polycyclic benzoimidazoles can also be obtained under standard conditions.
Collapse
Affiliation(s)
- Yechun Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Han Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
9
|
Ma R, Ren Y, Deng Z, Wang KH, Wang J, Huang D, Hu Y, Lv X. Visible Light Promotes Cascade Trifluoromethylation/Cyclization, Leading to Trifluoromethylated Polycyclic Quinazolinones, Benzimidazoles and Indoles. Molecules 2022; 27:molecules27238389. [PMID: 36500485 PMCID: PMC9737949 DOI: 10.3390/molecules27238389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Efficient visible-light-induced radical cascade trifluoromethylation/cyclization of inactivated alkenes with CF3Br, which is a nonhygroscopic, noncorrosive, cheap and industrially abundant chemical, was developed in this work, producing trifluoromethyl polycyclic quinazolinones, benzimidazoles and indoles under mild reaction conditions. The method features wide functional group compatibility and a broad substrate scope, offering a facile strategy to pharmaceutically produce valuable CF3-containing polycyclic aza-heterocycles.
Collapse
Affiliation(s)
- Ransong Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuanyuan Ren
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhoubin Deng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Junjiao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Correspondence:
| | - Xiaobo Lv
- Shanghai Sinofluoro Chemicals Co., Ltd., Shanghai 201321, China
| |
Collapse
|
10
|
Qian BC, Zhu CZ, Shen GB. The Application of Sulfonyl Hydrazides in Electrosynthesis: A Review of Recent Studies. ACS OMEGA 2022; 7:39531-39561. [PMID: 36385900 PMCID: PMC9648049 DOI: 10.1021/acsomega.2c04205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 05/25/2023]
Abstract
Sulfonyl hydrazides are viewed as alternatives to sulfinic acids and their salts or sulfonyl halides, which are broadly used in organic synthesis or work as active pharmaceutical substances. Generally, sulfonyl hydrazides are considered good building blocks and show powerful value in a diverse range of reactions to construct C-S bonds or C-C bonds, and even C-N bonds as sulfur, carbon, or nitrogen sources, respectively. As a profound synthetic tool, the electrosynthesis method was recently used to achieve efficient and green applications of sulfonyl hydrazides. Interestingly, many unique and novel electrochemical syntheses using sulfonyl hydrazides as radical precursors have been developed, including cascade reactions, functionalization of heterocycles, as well as a continuous flow method combining with electrochemical synthesis since 2017. Accordingly, it is necessary to specifically summarize the recent developments of electrosynthesis with only sulfonyl hydrazides as radical precursors to more deeply understand and better design novel electrochemical synthesis reactions. Herein, electrosynthesis research using sulfonyl hydrazides as radical precursors since 2017 is reviewed in detail based on the chemical structures of products and reaction mechanisms.
Collapse
Affiliation(s)
- Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Chao-Zhe Zhu
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| |
Collapse
|
11
|
Zeng FL, Zhang ZY, Yin PC, Cheng FK, Chen XL, Qu LB, Cao ZY, Yu B. Visible-Light-Induced Cascade Cyclization of 3-(2-(Ethynyl)phenyl)quinazolinones to Phosphorylated Quinolino[2,1- b]quinazolinones. Org Lett 2022; 24:7912-7917. [PMID: 36269864 DOI: 10.1021/acs.orglett.2c02930] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-(2-(Ethynyl)phenyl)quinazolinones were designed and synthesized as a class of novel and efficient skeletons for phosphorylation/cyclization reactions. Under visible light irradiation, a series of phosphorylated quinolino[2,1-b]quinazolinones (35 examples, up to 87% yield) were first synthesized from 3-(2-(ethynyl)phenyl)quinazolinones and diarylphosphine oxides by using 4CzIPN as a photocatalyst under mild conditions. This reaction was also applicable under sunlight irradiation. Moreover, the reaction efficiency could be significantly improved under continuous-flow conditions.
Collapse
Affiliation(s)
- Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Yang Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng-Cheng Yin
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Fu-Kun Cheng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|