1
|
Mao J, Hu Y, He S, Zhang S, Ma Q, Yuan Y, Jia X. Dual Functionalization of the α,β-C-H Bonds in Alanine Ester Derivatives via Enamine-Imine Tautomerism: Construction of 4-Quinolinolate Skeletons through a Fragmentation-Reassembly Pathway. Org Lett 2024; 26:11201-11205. [PMID: 39680733 DOI: 10.1021/acs.orglett.4c04324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Using a SbCl3/O2 mild oxidation system, a dual functionalization of the α,β-C-H bonds in alanine ester derivatives was achieved via enamine-imine tautomerism, and a series of quinoline-4-carboxylates were synthesized through a fragmentation-reassembly pathway. The investigation of the substrate scope revealed that various functional groups were easily tolerated, highlighting that this reaction provided an efficient path for the construction of the quinoline-4-carboxylate framework.
Collapse
Affiliation(s)
- Jie Mao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yue Hu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shumiao He
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shuwei Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Qiyuan Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yu Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaodong Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
2
|
Altia M, Anbarasan P. Reversal of Reactivity of Heyns Intermediate for the Concise Synthesis of Substituted 3-Hydroxyquinolines. J Org Chem 2024; 89:16899-16908. [PMID: 39496139 DOI: 10.1021/acs.joc.4c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
An efficient and general method for the synthesis of 3-hydroxyquinolines has been achieved from o-acylanilines and α-hydroxyketones in good yields. The strategy involves the intramolecular reverse trapping of the in situ generated aminoenol intermediate with an electrophilic carbonyl, viz. an interrupted Heyns rearrangement, followed by aromatization. Important features include good functional group tolerance, operational simplicity, gram-scale synthesis, and broad synthetic utility.
Collapse
Affiliation(s)
- Minakshi Altia
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
3
|
Altia M, Anbarasan P. Regioselective Synthesis of 2,3-Disubstituted Indoles via Interrupted Heyns Rearrangement Involving C-C Bond Cleavage. Chem Asian J 2024; 19:e202400731. [PMID: 39082672 DOI: 10.1002/asia.202400731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Indexed: 10/04/2024]
Abstract
A novel metal free, Brønsted acid mediated and operationally simple strategy has been developed for regioselective synthesis of 2,3-disubstituted indoles from α-hydroxyketones and o-aminoaryl ketones in excellent yields. The reaction proceeds via interrupted Heyns rearrangement through the generation of aminoenol intermediate followed by intramolecular trapping and aromatization with C-C bond cleavage and release of corresponding ester. The mechanism was further supported by the identification of ester in GCMS and reaction of cyclic α-hydroxydimethylketal, which afforded ester tethered indole derivative.
Collapse
Affiliation(s)
- Minakshi Altia
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
4
|
Altia M, Anbarasan P. Efficient Conversion of Glucose to Hydroxymethylfurfural: One-pot Brønsted Base and Acid Promoted Selective Isomerization and Dehydration. Chem Asian J 2024; 19:e202400392. [PMID: 38853450 DOI: 10.1002/asia.202400392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Development of elegant, selective, and efficient strategies for the production of value-added platform chemicals from renewable feedstocks are in high demand to achieve the future needs and sustainable goals. In this context, an efficient acid-promoted synthesis of highly valuable hydroxymethylfurfural (HMF) has been demonstrated from glucose, a major constituent of lignocellulosic biomass. The major challenge in the conversion of glucose to HMF is the selective isomerization of glucose to ketose, which in the present work has been successfully addressed through the amine-mediated rearrangement of glucose to aminofructose under Amadori rearrangement. Importantly, subsequent dehydration step affords HMF and regenerates the amine employed in the first step, which could be readily recovered. In addition, scale-up and successful integration into one-pot synthesis of HMF proves the efficiency and applicability of the present transformation in large scale application. In addition, the method was also successfully extended to other monosaccharides and disaccharides to produce HMF.
Collapse
Affiliation(s)
- Minakshi Altia
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
5
|
Barranco S, Cuccu F, Uras M, Frongia A. The Heyns Rearrangement: Synthetic Routes Beyond Carbohydrate Chemistry. Chemistry 2024; 30:e202400355. [PMID: 38411601 DOI: 10.1002/chem.202400355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
This concept review describes the recent achievements on the Heyns rearrangement appeared in literature over the last decade and aims to provide the reader with a general overview of the fundamental synthetic advances in this research area.
Collapse
Affiliation(s)
- Stefano Barranco
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy
| | - Federico Cuccu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy
| | - Mauro Uras
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy
| | - Angelo Frongia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy
| |
Collapse
|
6
|
Bai L, Wei JS, Zhong LY, Ma AQ, Wang J, Du ZQ, Xia AB, Xu DQ. Enantioselective α-Amination of Amides by One-Pot Organo-/Iodine Sequential Catalysis. Org Lett 2024; 26:258-263. [PMID: 38157251 DOI: 10.1021/acs.orglett.3c03925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
An one-pot organo- and iodine sequential catalysis strategy for reactions of amides with pyrazole-based primary amines was described to synthesize chiral α-amino amides with a quaternary stereocenter. This methodology exhibited strong asymmetric induction, resulting in a typical enantiomeric excess value exceeding 99% and diastereoselectivity up to >99:1 dr. Moreover, the reaction was conducted without the use of any metals or strong bases.
Collapse
Affiliation(s)
- Liang Bai
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jian-Sheng Wei
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ling-Yi Zhong
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ao-Qiang Ma
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jian Wang
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Du
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ai-Bao Xia
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
7
|
Altia M, Anbarasan P. An interrupted Heyns rearrangement approach for the regioselective synthesis of acylindoles. Chem Commun (Camb) 2023; 59:13747-13750. [PMID: 37916280 DOI: 10.1039/d3cc04144a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
An efficient and general method for the synthesis of 2- and 3-acylindoles has been achieved with high regioselectivity from o-acylanilines and α-hydroxycarbonyl or its equivalent. The strategy involves the intramolecular trapping of an in situ generated aminoenol intermediate and an interrupted Heyns rearrangement pathway, followed by aromatization or rearrangement/aromatization. Important features include excellent regiocontrol, good functional group tolerance, operational simplicity and application to gram-scale synthesis and the synthesis of an anti-tumor agent.
Collapse
Affiliation(s)
- Minakshi Altia
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India.
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India.
| |
Collapse
|
8
|
Zhou Y, Yue X, Jiang F, Sun J, Guo W. Catalytic asymmetric synthesis of α-tertiary aminoketones from sulfoxonium ylides bearing two aryl groups. Chem Commun (Camb) 2023; 59:1193-1196. [PMID: 36629287 DOI: 10.1039/d2cc06147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Disclosed herein is an efficient organocatalytic formal N-H insertion reaction of arylamines with α-keto sulfoxonium ylides bearing two aryl groups, delivering a broad range of α-tertiary aminoketones with good to excellent yields and enantioselectivities (up to 90% yield and 94% ee). The utilities of this protocol were also demonstrated by facile preparation of enantioenriched 2-amino-1,2-diarylethanol bearing two different aryl groups, a type of important building block lacking efficient access.
Collapse
Affiliation(s)
- Ying Zhou
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xin Yue
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Feng Jiang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Wengang Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
9
|
Cao J, Su YX, Zhang XY, Zhu SF. Highly Enantioselective Brønsted Acid Catalyzed Heyns Rearrangement. Angew Chem Int Ed Engl 2023; 62:e202212976. [PMID: 36316277 DOI: 10.1002/anie.202212976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 12/05/2022]
Abstract
Herein we report the first method for highly enantioselective Brønsted acid catalyzed Heyns rearrangements. These reactions, catalyzed by a chiral spiro phosphoric acid, afforded synthetically valuable chiral α-aryl-α-aminoketones which cannot be obtained by means of previously reported Heyns rearrangement methods. This method features low catalyst loadings, high yields and high enantioselectivities, making these reactions highly practical. We used the method to efficiently synthesize various chiral amines, including some biologically active molecules. We experimentally proved that these acid-catalyzed Heyns rearrangements proceeded via a proton-transfer process involving an enol intermediate and the stereocontrol was realized during the proton-transfer step.
Collapse
Affiliation(s)
- Jin Cao
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yu-Xuan Su
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Xin-Yu Zhang
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.,Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| |
Collapse
|