1
|
Sun K, Sun T, Jiang Y, Shi J, Sun W, Zheng Y, Wang Z, Li Z, Lv X, Zhang X, Luo F, Liu S. Iron-catalyzed benzylic C-H thiolation via photoinduced ligand-to-metal charge-transfer. Chem Commun (Camb) 2024; 60:5755-5758. [PMID: 38747147 DOI: 10.1039/d4cc01574f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Here, we describe an iron-catalyzed benzylic C-H thiolation of alkylarenes via photoinduced ligand-to-metal charge-transfer. The protocol features operational simplicity, mild reaction conditions, and the use of FeCl3 as catalyst and thiols/disulfides as sulfur sources, which enables the transformation of diverse benzylic C-H bonds into C-S bonds with a high efficiency.
Collapse
Affiliation(s)
- Kaiting Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Tianyi Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Yuxin Jiang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Jiayue Shi
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Wenlu Sun
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Youyou Zheng
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Zhixuan Wang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Ziyu Li
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Fan Luo
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Shihui Liu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| |
Collapse
|
2
|
Jia H, Li N, Tang C, Ni W, Zhao X, Sun J, Wu F, Shen X, Zhai H. α-Acyloxylation of Ketones/Cyclic Ethers Mediated by Hypervalent Iodine(III) Reagents as Oxidants and Nucleophilic Sources. J Org Chem 2024; 89:2055-2063. [PMID: 38207340 DOI: 10.1021/acs.joc.3c02526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This study describes a catalyst-free α-acyloxylation of ketones and a KBr-mediated α-acyloxylation of cyclic ethers. These conversions are effectively mediated by hypervalent iodine(III) reagents serving dual roles as the oxidant and nucleophilic source. Consequently, esters are produced directly in moderate to excellent yields. The proposed method features good functional group compatibility, a broad substrate scope, and high synthetic efficiency and is remarkably environmentally friendly.
Collapse
Affiliation(s)
- Hao Jia
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Nan Li
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Chunmei Tang
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Wenjing Ni
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Xinru Zhao
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Jing Sun
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Fufang Wu
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Xiaobao Shen
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Hongbin Zhai
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
3
|
Jin Y, Fan LF, Ng EWH, Yu L, Hirao H, Gong LZ. Atom Transfer Radical Coupling Enables Highly Enantioselective Carbo-Oxygenation of Alkenes with Hydrocarbons. J Am Chem Soc 2023; 145:22031-22040. [PMID: 37774121 DOI: 10.1021/jacs.3c07008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The selective functionalization of C(sp3)-H bonds has emerged as a transformative approach for streamlining synthetic routes, offering remarkable efficiency in the preparation and modification of complex organic molecules. However, the direct enantioselective transformation of hydrocarbons to medicinally valuable chiral molecules remains a significant challenge that has yet to be addressed. In this study, we adopt an atom transfer radical coupling (ATRC) strategy to achieve the asymmetric functionalization of C(sp3)-H bonds in hydrocarbons. This approach involves intermolecular H atom transfer (HAT) between a hydrocarbon and an alkoxy radical, leading to the formation of a carbon-centered radical. The resulting radical adds to alkenes, generating a new radical species that is intercepted by a chiral copper-mediated C-O bond coupling. By employing this method, we can directly access valuable chiral lactones bearing a quaternary stereocenter with high efficiency and excellent enantioselectivity. Importantly, ATRC exhibits great potential as a versatile platform for achieving stereoselective transformations of hydrocarbons.
Collapse
Affiliation(s)
- Youxiang Jin
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lian-Feng Fan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Elvis Wang Hei Ng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei 230026, China
| |
Collapse
|
4
|
Bhowmick A, Chatterjee A, Pathak SS, Bhat RG. A visible light-driven direct synthesis of industrially relevant glutaric acid diesters from aldehydes. Chem Commun (Camb) 2023; 59:11875-11878. [PMID: 37724011 DOI: 10.1039/d3cc02557h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
A straightforward and practical method has been developed to access α-substituted glutaric diesters from acrylates and aldehydes using visible light, with Eosin Y facilitating hydrogen atom transfer (HAT) and subsequent Giese-type addition. Also, sunlight has been successfully used as an alternative sustainable light source. The method has also been explored to access substituted 4,5-dihydro-2H-pyridazinones, which have potential biological and industrial applications. Comprehensive mechanistic investigations have been carried out.
Collapse
Affiliation(s)
- Anindita Bhowmick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India.
| | - Abhijit Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India.
| | - Sidharth S Pathak
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India.
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India.
| |
Collapse
|
5
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
6
|
Murray PD, Leibler INM, Hell SM, Villalona E, Doyle AG, Knowles RR. Radical Redox Annulations: A General Light-Driven Method for the Synthesis of Saturated Heterocycles. ACS Catal 2022; 12:13732-13740. [PMID: 36366762 PMCID: PMC9638994 DOI: 10.1021/acscatal.2c04316] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Indexed: 11/29/2022]
Abstract
We introduce here a two-component annulation strategy that provides access to a diverse collection of five- and six-membered saturated heterocycles from aryl alkenes and a family of redox-active radical precursors bearing tethered nucleophiles. This transformation is mediated by a combination of an Ir(III) photocatalyst and a Brønsted acid under visible-light irradiation. A reductive proton-coupled electron transfer generates a reactive radical which undergoes addition to an alkene. Then, an oxidative radical-polar crossover step leading to carbocation formation is followed by ring closure through cyclization of the tethered nucleophile. A wide range of heterocycles are easily accessible, including pyrrolidines, piperidines, tetrahydrofurans, morpholines, δ-valerolactones, and dioxanones. We demonstrate the scope of this approach through broad structural variation of both reaction components. This method is amenable to gram-scale preparation and to complex fragment coupling.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | | | - Sandrine M. Hell
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Eris Villalona
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Abigail G. Doyle
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California90095, United States
| | - Robert R. Knowles
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| |
Collapse
|
7
|
Hitt M, Vedernikov AN. Oxidative Trifluoroacetoxylation of 1°, 2°, and 3° Benzylic C(sp 3)-H Bond Donors Using N-Trifluoroacetoxyquinuclidinium Salts under Photoredox Catalysis. Org Lett 2022; 24:7737-7741. [PMID: 36239346 DOI: 10.1021/acs.orglett.2c02946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Trifluoroacetoxyquinuclidinium trifluoroacetate was prepared in situ from quinuclidine N-oxide and (CF3CO)2O. Except for some electron-poor substrates, this reagent allows for the high-yielding oxidative trifluoroacetoxylation of 1°, 2°, and 3° benzylic C-H bonds under photocatalytic conditions. The trifluoroacetoxylation of an ibuprofen methyl ester allowed the selective functionalization of a 2° benzylic C-H bond. For alkylbenzenes, hydrogen-atom transfer from a benzylic C-H bond to a quinuclidine cation radical was proposed to be the reaction-product-determining step.
Collapse
Affiliation(s)
- Michael Hitt
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Andrei N Vedernikov
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
8
|
Gui J, Sun M, Wu H, Li J, Yang J, Wang Z. Direct benzylic C–H difluoroalkylation with difluoroenoxysilanes by transition metal-free photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light promoted direct benzylic C–H difluoroalkylation with difluoroenoxysilanes catalyzed by Na2-eosin Y via a HAT-ORPC pathway has been developed, providing an efficient and atom-economic method for production of α-benzyl-α,α-difluoroketones.
Collapse
Affiliation(s)
- Jing Gui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Jianguo Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Zhiming Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|