1
|
Li J, Wang Y, Wang Y, Zhai L, Huang J, Song L, You H, Chen FE. Desymmetrization of Inert meso-Diethers through Copper-Catalyzed Asymmetric Allylic Alkylation with Grignard Reagents. Org Lett 2024; 26:5844-5849. [PMID: 38950387 DOI: 10.1021/acs.orglett.4c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
We have developed a highly regio-, diastereo-, and enantioselective Cu-catalyzed desymmetrization of inert meso-diethers using Grignard reagents. Moreover, previous inaccessible sterically hindered organometallic reagents are realized in the reaction with broad secondary alkyl Grignard reagents. Finally, detailed control experiments and density functional theory calculations revealed the desymmetrization of meso-diethers exploits a direct anti-SN2' pathway, in the absence of an in situ-generated allyl bromine intermediate. The following oxidative addition is the crucial rate-determining and enantioselectivity-determining step.
Collapse
Affiliation(s)
- Jun Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yu Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yan Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lianjie Zhai
- National Key Lab of Science and Technology on Combustion and Explosion, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Xu S, Xu W, Dong S, Liu D, Zhang W. RuPHOX-Ru Catalyzed Asymmetric Cascade Hydrogenation of 3-Substituted Chromones for the Synthesis of Corresponding Chiral Chromanols. Chemistry 2024; 30:e202400978. [PMID: 38695858 DOI: 10.1002/chem.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 06/15/2024]
Abstract
An efficient RuPHOX-Ru catalyzed asymmetric cascade hydrogenation of 3-substituted chromones has been achieved under mild reaction conditions, affording the corresponding chiral 3-substituted chromanols in high yields with excellent enantio- and diastereoselectivities (up to 99 % yield, >99 % ee and >20 : 1 dr). Control reactions and deuterium labelling experiments revealed that a dynamic kinetic resolution process occurs during the subsequent hydrogenation of the C=O double bond, which is responsible for the high performance of the asymmetric cascade hydrogenation. The resulting products allow for several transformations and it was shown that the protocol provides a practical and alternative strategy for the synthesis of chiral 3-substituted chromanols and their derivatives.
Collapse
Affiliation(s)
- Shaofeng Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wenqi Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Siqi Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
3
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
4
|
He X, Wang D, Liu Y, Wu M, Kong Y, Tang Q, Wang Y, Fan C, Shang Y. Synthesis of arene-functionalized fused heterocyclic scaffolds via a regioselective cascade 1,4-conjugate addition/5- exo-dig annulation strategy. Org Biomol Chem 2023; 21:9159-9172. [PMID: 37962430 DOI: 10.1039/d3ob01572f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Facile access to furan fused heterocyclic scaffolds through a regioselective cascade reaction of propargylamines with 4-hydroxy-2H-pyran-2-ones and 4-hydroxy-6-methylpyridin-2(1H)-one has been achieved. This cascade reaction presumably involves the formation of ortho-alkynyl quinone methide (o-AQM), 1,4-conjugate addition, followed by regioselective 5-exo-dig annulation, and a 1,3-H shift process. Moreover, the reaction provides a new and efficient method for the synthesis of highly sterically congested 3-phenolic furo[3,2-c]pyran-4-ones and furo[3,2-c]pyridin-4(5H)-ones by the formation of a furan ring from readily available starting materials in good to high yields (50-82%) with broad functional group compatibility in a single step. Significantly, the strategy described here is easily scalable and several useful synthetic transformations of the prepared arene-functionalized 4H-furo[3,2-c]pyran-4-ones were also performed.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yangzilin Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yiping Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Chenli Fan
- School of Material Engineering, Wuhu Institute of Technology, Wuhu, 241002, People's Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
5
|
Nanda SK. Asymmetric cascades of the π-allyl complex: a journey from transition-metal catalysis to metallaphotocatalysis. Chem Commun (Camb) 2023; 59:11298-11319. [PMID: 37670574 DOI: 10.1039/d3cc03010e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The enantioselective catalytic cascade involving Tsuji-Trost allylation has provided a viable strategy for the construction of multiple asymmetric C-C and C-X centres and numerous methods have been developed around it for the synthesis of various vital scaffolds. The synthetic utility of this strategy was enhanced by replacing the customary allyl acetates with ethylene diacetates/dicarbonates, vinyl epoxides, vinyl oxetanes, vinyl ethylene carbonates, vinyl cyclopropanes, enynes, and dienes using transition-metal catalysis. One more milestone was achieved when metallaphotocatalysis provided the necessary platform for these cascades by using a cheaper metal. This review will provide a summary of these enantioselective catalytic cascades from 2015.
Collapse
Affiliation(s)
- Santosh Kumar Nanda
- Department of Chemistry, School of Applied Science, Centurion University, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
6
|
Mao HL, Wang YX, Wang X, Wang HY, Hao WJ, Jiang B. Pd-Catalyzed Asymmetric Annulative Dearomatization of Phenols for Regio- and Enantioselective Synthesis of Spirocyclohexadienones. Org Lett 2023; 25:5963-5968. [PMID: 37540111 DOI: 10.1021/acs.orglett.3c02051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A palladium-catalyzed asymmetric annulative dearomatization of phenols with butene dicarbonate is reported, enabling twofold decarboxylative allylation to regioselectively produce a range of spirocyclohexadienones with 29-95% yields and 74-99% ee. A catalytic dearomative formal [4 + 2] cyclization of 1,1'-biphenyl-2,4'-diols delivered spiro[chromane-4,1'-cyclohexane]-2',5'-dien-4'-ones with high enantioselectivity, whereas enantioenriched spiro[cyclohexane-1,4'-quinoline]-2,5-dien-4-ones were generated starting from 2'-amino-[1,1'-biphenyl]-4-ols as 1,4-dinucleophiles.
Collapse
Affiliation(s)
- Hui-Lin Mao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Yu-Xin Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Xue Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Hai-Ying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
7
|
Chen LQ, Zhu CF, Zhang S, Liu BY, Tu SJ, Hao WJ, Jiang B. Palladium-catalyzed annulative allylic alkylation for regioselective construction of indole-fused medium-sized cyclic ethers. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Wang X, Mao HL, Yang YH, Jiang H, Chen LQ, Tu SJ, Hao WJ, Jiang B. Regio- and Enantioselective Synthesis of Dihydropyrido[1,2- a]indoles via Catalytic Asymmetric Annulative Allylic Alkylation. J Org Chem 2022; 87:15644-15652. [PMID: 36322841 DOI: 10.1021/acs.joc.2c01873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A palladium-catalyzed asymmetric annulative allylic alkylation reaction of 2-[(1H-indol-2-yl)methyl]malonates with (E)-but-2-ene-1,4-diyl dicarbonates is described, leading to the regio- and enantioselective synthesis of dihydropyrido[1,2-a]indoles with a chiral cyclic allyl stereocenter adjacent to the ring-junction nitrogen atom in moderate to good yields. The salient features of this protocol include mild conditions, a broad substrate scope, and good compatibility with substituents as well as high regio- and stereoselectivities, providing a catalytic asymmetric entry for fabricating chiral pyridoindole scaffolds.
Collapse
Affiliation(s)
- Xue Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hui-Lin Mao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yu-Heng Yang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hong Jiang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ling-Qi Chen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|