1
|
Vollmann DJ, Lernoud L, Nett M. Genome Reduction Improves Recombinant Benzoxazole Production in Myxococcus xanthus. ACS Synth Biol 2025. [PMID: 40257411 DOI: 10.1021/acssynbio.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Genome reduction is a fundamental concept in evolution. In synthetic biology, the same strategy has been adopted for the construction of cells with desired physiological and metabolic traits. In this study we report the impact of genome reduction on the biotechnological performance of Myxococcus xanthus. This predatory soil bacterium is a model system for coordinated social behavior, which ranges from cooperative feeding to the formation of fruiting bodies. The complexity of its lifestyle is reflected in a large genome, of which a significant portion harbors biosynthetic gene clusters (BGCs) for the production of secondary metabolites. These compounds are typically considered dispensable for growth under defined laboratory conditions. Therefore, the genomic deletion of these BGCs was expected to eliminate metabolic byproducts and to liberate biosynthetic resources, which could then be supplied to recombinant pathways. Our studies show that the consecutive removal of BGCs from the M. xanthus genome can considerably improve the titer of a recombinantly produced natural product. Furthermore, we observed that M. xanthus does not tolerate the combined elimination of certain BGCs, whereas individual deletions of the same loci are possible.
Collapse
Affiliation(s)
- Dustin Joshua Vollmann
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund 44227, Germany
| | - Lucia Lernoud
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund 44227, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund 44227, Germany
| |
Collapse
|
2
|
Wang CY, Hu JQ, Wang DG, Li YZ, Wu C. Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023. Nat Prod Rep 2024; 41:905-934. [PMID: 38390645 DOI: 10.1039/d3np00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Covering: 2017.01 to 2023.11Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017-2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.
Collapse
Affiliation(s)
- Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| |
Collapse
|
3
|
Steinmetz T, Lombe BK, Nett M. Intermediates and shunt products of massiliachelin biosynthesis in Massilia sp. NR 4-1. Beilstein J Org Chem 2023; 19:909-917. [PMID: 37377775 PMCID: PMC10291242 DOI: 10.3762/bjoc.19.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Siderophores are small molecules secreted by microorganisms in order to scavenge iron from the environment. An example is the thiazoline-containing natural product massiliachelin, which is produced by Massilia sp. NR 4-1 under iron-deficient conditions. Based on experimental evidence and genome analysis, it was suspected that this bacterium synthesizes further iron-chelating molecules. After a thorough inspection of its metabolic profile, six previously overlooked compounds were isolated that were active in the chrome azurol S (CAS) assay. Mass spectrometric measurements and nuclear magnetic resonance spectroscopic analyses identified these compounds as possible biosynthetic intermediates or shunt products of massiliachelin. Their bioactivity was tested against one Gram-positive and three Gram-negative bacteria.
Collapse
Affiliation(s)
- Till Steinmetz
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Blaise Kimbadi Lombe
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| |
Collapse
|
4
|
Winand L, Lernoud L, Meyners SA, Kuhr K, Hiller W, Nett M. Myxococcus xanthus as Host for the Production of Benzoxazoles. Chembiochem 2023; 24:e202200635. [PMID: 36484355 DOI: 10.1002/cbic.202200635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
Benzoxazoles are important structural motifs in pharmaceutical drugs. Here, we present the heterologous production of 3-hydroxyanthranilate-derived benzoxazoles in the host bacterium Myxococcus xanthus following the expression of two genes from the nataxazole biosynthetic gene cluster of Streptomyces sp. Tü 6176. The M. xanthus expression strain achieved a benzoxazole titer of 114.6±7.4 mg L-1 upon precursor supplementation, which is superior to other bacterial production systems. Crosstalk between the heterologously expressed benzoxazole pathway and the endogenous myxochelin pathway led to the combinatorial biosynthesis of benzoxazoles featuring a 2,3-dihydroxybenzoic acid (2,3-DHBA) building block. Subsequent in vitro studies confirmed that this crosstalk is not only due to the availability of 2,3-DHBA in M. xanthus, rather, it is promoted by the adenylating enzyme MxcE from the myxochelin pathway, which contributes to the activation of aryl carboxylic acids and delivers them to benzoxazole biosynthesis.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Lucia Lernoud
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Saskia Anna Meyners
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Katharina Kuhr
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, NMR Laboratory, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| |
Collapse
|
5
|
Orlova A, Kysil E, Tsvetkova E, Meshalkina D, Whaley A, Whaley AO, Laub A, Francioso A, Babich O, Wessjohann LA, Mosca L, Frolov A, Povydysh M. Phytochemical Characterization of Water Avens ( Geum rivale L.) Extracts: Structure Assignment and Biological Activity of the Major Phenolic Constituents. PLANTS (BASEL, SWITZERLAND) 2022; 11:2859. [PMID: 36365312 PMCID: PMC9658556 DOI: 10.3390/plants11212859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Water avens (Geum rivale L.) is a common Rosaceae plant widely spread in Europe and North America. It is rich in biologically active natural products, some of which are promising as prospective pharmaceuticals. The extracts of water avens are well known for their triterpenoid metabolites and associated anti-inflammatory, antimicrobial and antioxidant activities. However, the polyphenolic profiles of G. rivale L. are still awaiting complete characterization. Accordingly, the contribution of its individual components to the antioxidant, antibacterial and neuroprotective activity of the extracts is still unknown. As this plant can be available on an industrial scale, a better knowledge of its properly-relevant constituents might give access to new highly-efficient pharmaceutical substances and functional products. Therefore, herein we comprehensively characterize the secondary metabolome of G. rivale by ESI-HR-MS, ESI-HR-MSn and NMR spectroscopy with a special emphasis on the polyphenolic composition of its aerial parts. Furthermore, a multilateral evaluation of the antioxidant, neuroprotective and antibacterial properties of the aqueous and ethyl acetate fractions of the total aqueous alcoholic extract as well as individual isolated polyphenols was accomplished. Altogether four phenolic acid derivatives (trigalloyl hexose, caffeoyl-hexoside malate, ellagic acid and ellagic acid pentoside), six flavonoids (three quercetin derivatives, kaempferol and three its derivatives and two isorhamnetin derivatives) and four tannins (HHDP-hexoside, proantocyanidin dimer, pedunculagin I and galloyl-bis-HHDP-hexose) were identified in this plant for the first time. The obtained aqueous and ethyl acetate fractions of the total extract as well as the isolated individual compounds showed pronounced antioxidant activity. In addition, a pronounced antibacterial activity against several strains was proved for the studied fractions (for ethyl acetate fraction the highest activity against E. coli АТСС 25922 and S. aureus strains ATCC 27853 and SG-511 (MIC 15.6 μg/mL) was observed; for aqueous fraction-against Staphylococcus aureus SG-511 (MIC 31.2 μg/mL)). However, the anti-neurodegenerative (neuroprotective) properties could not be found with the employed methods. However, the antibacterial activity of the fractions could not be associated with any of the isolated individual major phenolics (excepting 3-O-methylellagic acid). Thus, the aerial parts of water avens represent a promising source of polyphenolic compounds with antioxidant activity and therefrom derived human health benefits, although the single constituents isolated so far lack a dominant selectively bioactive constituent in the bioassays performed.
Collapse
Affiliation(s)
- Anastasia Orlova
- Laboratory of Cell Regulation, K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Elana Kysil
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Elena Tsvetkova
- Department of Biochemistry, St. Petersburg State University, 199034 Saint-Petersburg, Russia
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197022 Saint-Petersburg, Russia
| | - Darya Meshalkina
- Department of Biochemistry, St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Andrei Whaley
- Department of Pharmacognosy, St. Petersburg State Chemical and Pharmaceutical University, 197022 Saint-Petersburg, Russia
| | - Anastasiia O. Whaley
- Department of Pharmacognosy, St. Petersburg State Chemical and Pharmaceutical University, 197022 Saint-Petersburg, Russia
| | - Annegret Laub
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Antonio Francioso
- Department of Biochemical Sciences, Sapienza University, 00185 Rome, Italy
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, 00185 Rome, Italy
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Maria Povydysh
- Department of Biochemistry, St. Petersburg State Chemical and Pharmaceutical University, 197022 Saint-Petersburg, Russia
| |
Collapse
|
6
|
Vollmann DJ, Winand L, Nett M. Emerging concepts in the semisynthetic and mutasynthetic production of natural products. Curr Opin Biotechnol 2022; 77:102761. [DOI: 10.1016/j.copbio.2022.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
7
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2022. [PMID: 35708284 DOI: 10.1039/d2np90019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as chevalinulin A from Aspergillus chevalieri.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UK, G12 8QQ.
| | | |
Collapse
|