1
|
Oliver GA, Kolb S, George M, Werz DB. Halogenated Donor-Acceptor Cyclopropanes as Donor-Acceptor Cyclopropene Surrogates. Angew Chem Int Ed Engl 2025; 64:e202424823. [PMID: 39936835 DOI: 10.1002/anie.202424823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Herein we report (3+2)-cycloaddition reactions of halogenated donor-acceptor cyclopropanes (HDACs) as surrogates for donor-acceptor cyclopropenes. Upon reaction with a variety of 2π-components, cycloaddition followed by elimination generates the unsaturated five-membered ring products. A series of HDACs were shown to be effective in reactions with thioketones. Five further cycloaddition reactions were used to showcase the broad applicability of these donor-acceptor cyclopropene surrogates. Kinetic studies allowed the proposal of a plausible mechanism for this reaction.
Collapse
Affiliation(s)
- Gwyndaf A Oliver
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg (im Breisgau), Germany
| | - Simon Kolb
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg (im Breisgau), Germany
| | - Malini George
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg (im Breisgau), Germany
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg (im Breisgau), Germany
| |
Collapse
|
2
|
Mondal S, Debnath S, Lo R, Maity S. Photoredox Activation of Donor-Acceptor Cyclopropanes: Distonic Radical Cation Reactivity in [3+2] Cycloaddition Reactions. Angew Chem Int Ed Engl 2025; 64:e202419426. [PMID: 39658810 DOI: 10.1002/anie.202419426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Altering the reactivity model of a molecule can potentially eliminate limitations existing in its current paradigm. When it comes to the activation of Donor-Acceptor Cyclopropanes (DACs), Lewis acids have been the state-of-the-art. Although a variety of polarized 2π components have been successfully coupled with DACs for [3+2] cycloaddition, unpolarized alkenes prove to be a roadblock due to an inherent polarity mismatch with the Lewis acid-mediated 1,3-zwitterionic intermediate. Hereby, harnessing the distonic radical cation mode of cleavage by photoredox catalysis overcomes this mismatched reactivity of the zwitterionic intermediate, providing a unique route to highly substituted cyclopentanes and cyclopentenes. Expansion of this strategy to bicyclo[1.1.0]butanes enables access to bicyclo[3.1.1]heptanes (BCHs) through a facile [3σ+2σ] cycloaddition. Detailed mechanistic insights are also provided using dispersion-corrected density functional theory.
Collapse
Affiliation(s)
- Subhashis Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, 826004, India
| | - Saradindu Debnath
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, 826004, India
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
3
|
Li DJ, Liu XL, Liao YZ, Zhao Y, Pan F. Photocatalytic Regioselective Redox-Neutral 1,3-Oxypyridylation of Aryl Cyclopropanes. Org Lett 2024; 26:8063-8068. [PMID: 39283009 DOI: 10.1021/acs.orglett.4c02918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Pyridines and cyclopropanes are important structural units in chemistry. Herein, we introduce a photoredox-catalyzed approach for the ring opening and 1,3-oxypyridylation of aryl cyclopropanes using 4-cyanopyridines and carboxylic acids. This sequential process involves single-electron oxidation of the aryl cyclopropane, leading to nucleophilic ring opening and radical pyridylation at the benzylic position. The redox-neutral reaction exhibits high regioselectivity under mild reaction conditions, offering a broad substrate scope and wide applicability.
Collapse
Affiliation(s)
- Dong-Jie Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Xia-Ling Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - You-Zhi Liao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yi Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
4
|
Jiang Y, Ma HJ, Zhai CY, Wang XL. Sn(OTf) 2-Catalyzed (3 + 2) Cycloaddition/Sulfur Rearrangement Reaction of Donor-Acceptor Cyclopropanes with Indoline-2-thiones. Org Lett 2024; 26:1672-1676. [PMID: 38359067 DOI: 10.1021/acs.orglett.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The (3 + 2) cycloaddition/sulfur rearrangement reaction of donor-acceptor cyclopropanes bearing a single keto acceptor with indoline-2-thiones has been realized. Under the catalysis of Sn(OTf)2, a series of functionalized 3-indolyl-4,5-dihydrothiophenes were synthesized with moderate to excellent yields.
Collapse
Affiliation(s)
- Yan Jiang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Hao-Jie Ma
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Chen-Ying Zhai
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xue-Long Wang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|
5
|
Jiang Y, Ma HJ, Wang XL, Yang Y. Yb(OTf) 3-Catalyzed Formal (4 + 3) Cycloaddition Reactions of 3-Benzylideneindoline-2-thiones with Donor-Acceptor Cyclopropanes. J Org Chem 2023; 88:14587-14600. [PMID: 37819164 DOI: 10.1021/acs.joc.3c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A Yb(OTf)3-catalyzed formal (4 + 3) cycloaddition reaction of donor-acceptor cyclopropanes with 3-benzylideneindoline-2-thiones as sulfur-containing 4π components has been successfully achieved. A series of functionalized 5,10-dihydro-2H-thiepino[2,3-b]indole derivatives were synthesized with good yields and moderate to good diastereoselectivity. The reaction described herein represented the inaugural (4 + 3) cycloaddition of 3-benzylideneindoline-2-thiones.
Collapse
Affiliation(s)
- Yan Jiang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Hao-Jie Ma
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xue-Long Wang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Yi Yang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|
6
|
Ma HJ, Gao K, Wang XL, Zeng JY, Yang Y, Jiang Y. AlCl 3-mediated ring-opening reactions of indoline-2-thiones with acyl cyclopropanes, bi-cyclopropanes and spirocyclic cyclopropanes. Org Biomol Chem 2023; 21:6312-6316. [PMID: 37493459 DOI: 10.1039/d3ob00909b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
AlCl3-mediated nucleophilic ring-opening reactions of indoline-2-thiones with various acyl cyclopropanes, bi-cyclopropanes and spirocyclic cyclopropanes were investigated. A series of ketones functionalized with indolylthio groups were synthesized in yields ranging from moderate to good. Moreover, chemical transformations of 4-indolylthio butan-1-ones to dihydro-2H-thiepino[2,3-b]indoles and sulfone were carried out to further expand both synthetic utility and structural complexity.
Collapse
Affiliation(s)
- Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Ke Gao
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Xue-Long Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Jun-Yi Zeng
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
7
|
Ahlburg NL, Hergert O, Jones PG, Werz DB. Donor-Acceptor Cyclopropanes: Activation Enabled by a Single, Vinylogous Acceptor. Angew Chem Int Ed Engl 2023; 62:e202214390. [PMID: 36322458 PMCID: PMC10099577 DOI: 10.1002/anie.202214390] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 11/05/2022]
Abstract
A novel class of highly activated donor-acceptor cyclopropanes bearing only a single, vinylogous acceptor is presented. These strained moieties readily undergo cycloadditions with aldehydes, ketones, thioketones, nitriles, naphth-2-ols and various other substrates to yield the corresponding carbo- and heterocycles. Diastereocontrol can be achieved through the choice of catalyst (Brønsted or Lewis acid). The formation of tetrahydrofurans was shown to be highly enantiospecific when chiral cyclopropanes are employed. A series of mechanistic and kinetic experiments was conducted to elucidate a plausible catalytic cycle and to rationalize the stereochemical outcome.
Collapse
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Oliver Hergert
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Daniel B. Werz
- Albert-Ludwigs-Universität FreiburgInstitute of Organic ChemistryAlbertstraße 2179104Freiburg (Breisgau)Germany
| |
Collapse
|
8
|
Knyazev DA, Belaya MA, Volodin AD, Korlyukov AA, Novikov RA, Tomilov YV. Gallium trichloride-mediated reactions of ‘double’ donor–acceptor cyclopropanes with alkenes and dienes. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Ahlburg NL, Hergert O, Jones PG, Werz DB. Donor‐Acceptor Cyclopropanes: Activation Enabled by a Single, Vinylogous Acceptor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Oliver Hergert
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Albert-Ludwigs-Universität Freiburg Institute of Organic Chemistry Albertstraße 21 79104 Freiburg (Breisgau) Germany
| |
Collapse
|
10
|
Peng CC, Long F, Zhang KY, Hu YC, Wu LJ. Copper(I)-Catalyzed Cross-Coupling of Arylsulfonyl Radicals with Diazo Compounds: Assembly of Arylsulfones. J Org Chem 2022; 87:12265-12273. [PMID: 36037316 DOI: 10.1021/acs.joc.2c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel copper-catalyzed cross-coupling of arylsulfonyl radicals with diazo compounds is described for the synthesis of various arylsulfones under mild conditions. In this reaction, the cheap, environmentally friendly, and readily available inorganic K2S2O5 is employed as the sulfur dioxide source for providing arylsulfonyl radicals. In addition, a radical mechanism involving the insertion of sulfur dioxide with aryl radicals followed by the coupling of arylsulfonyl radicals with copper carbenes is proposed.
Collapse
Affiliation(s)
- Chuan-Chong Peng
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fang Long
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.,Department of Hunan Cuisine, ChangSha Commerce & Tourism College, Changsha 410116, China
| | - Kai-Yi Zhang
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yun-Chu Hu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Andreev I, Boichenko M, Ratmanova N, Ivanova O, Levina I, Khrustalev V, Sedov I, Trushkov I. 4‐(Dimethylamino)pyridinium Azide in Protic Ionic Liquid Media as a Stable Equivalent of Hydrazoic Acid. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ivan Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | - Maksim Boichenko
- Lomonosov Moscow State University Department of Chemistry RUSSIAN FEDERATION
| | - Nina Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | | | - Irina Levina
- FSBSI Institute of Biochemical Physics named after N M Emanuel of the Russian Academy of Sciences RUSSIAN FEDERATION
| | | | - Igor Sedov
- Kazan Federal University RUSSIAN FEDERATION
| | - Igor Trushkov
- N.D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| |
Collapse
|