1
|
Amran RH, Jamal MT, Bowrji S, Sayegh F, Santanumurti MB, Satheesh S. Mini review: antimicrobial compounds produced by bacteria associated with marine invertebrates. Folia Microbiol (Praha) 2025; 70:271-292. [PMID: 39446239 DOI: 10.1007/s12223-024-01209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The marine environment is considered one of the most important ecosystems with high biodiversity. Microorganisms in this environment are variable and coexist with other marine organisms. The microbes associated with other marine organisms produce compounds with biological activity that may help the host's defense against invading organisms. The symbiotic association of bacteria with marine invertebrates is of ecological and biotechnological importance. Biologically active metabolites isolated from bacteria associated with marine invertebrates are considered potential sources of natural antimicrobial molecules for treating infectious diseases. Many studies have been conducted to screen the antimicrobial activity of metabolites produced by bacteria associated with marine invertebrates. This work provides an overview of the advancements in antimicrobial compound research on bacteria associated with marine invertebrates.
Collapse
Affiliation(s)
- Ramzi H Amran
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdoh T Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
| | - Saba Bowrji
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
| | - Fotoon Sayegh
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Browijoyo Santanumurti
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, 60115, Surabaya, Indonesia
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2022. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:399-414. [PMID: 38151899 DOI: 10.1080/10286020.2023.2288939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
The new natural products reported in 2022 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2022 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Liu W, Zhai S, Zhang L, Chen Y, Liu Z, Ma W, Zhang T, Zhang W, Ma L, Zhang C, Zhang W. Expanding the Chemical Diversity of Grisechelins via Heterologous Expression. JOURNAL OF NATURAL PRODUCTS 2024; 87:371-380. [PMID: 38301035 DOI: 10.1021/acs.jnatprod.3c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Thiazole scaffold-based small molecules exhibit a range of biological activities and play important roles in drug discovery. Based on bioinformatics analysis, a putative biosynthetic gene cluster (BGC) for thiazole-containing compounds was identified from Streptomyces sp. SCSIO 40020. Heterologous expression of this BGC led to the production of eight new thiazole-containing compounds, grisechelins E, F, and I-N (1, 2, 5-10), and two quinoline derivatives, grisechelins G and H (3 and 4). The structures of 1-10, including their absolute configurations, were elucidated by HRESIMS, NMR spectroscopic data, ECD calculations, and single-crystal X-ray diffraction analysis. Grisechelin F (2) is a unique derivative, distinguished by the presence of a salicylic acid moiety. The biosynthetic pathway for 2 was proposed based on bioinformatics analysis and in vivo gene knockout experiments. Grisechelin E (1) displayed moderate antimycobacterial activity against Mycobacterium tuberculosis H37Ra (MIC of 8 μg mL-1).
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- Department of Clinical Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 96 Dongchuan Road, Guangzhou 510080, People's Republic of China
| | - Shilan Zhai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou 510070, People's Republic of China
| | - Zhiyong Liu
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510530, People's Republic of China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Guangzhou National Laboratory, Guangzhou 510005, People's Republic of China
| | - Wanli Ma
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510530, People's Republic of China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Tianyu Zhang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Guangzhou National Laboratory, Guangzhou 510005, People's Republic of China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou 510070, People's Republic of China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
4
|
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
5
|
Jiao WH, Li JX, Liu HY, Luo XC, Hu TY, Shi GH, Xie DD, Chen HF, Cheng BH, Lin HW. Dysambiol, an Anti-inflammatory Secomeroterpenoid from a Dysidea sp. Marine Sponge. Org Lett 2023; 25:6391-6395. [PMID: 37610094 DOI: 10.1021/acs.orglett.3c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
An unusual secomeroterpenoid, dysambiol (1), was isolated from a Dysidea sp. marine sponge collected from the South China Sea. Dysambiol features an unprecedented secomeroterpene scaffold with a rare lactone bridge. The structure of 1 was determined by extensive spectroscopic analysis, Mosher's method, and electronic circular dichroism calculation. Dysambiol displayed potent anti-inflammatory activity in LPS-induced Raw 264.7 macrophages by regulating the NF-κB/MPAK signaling pathway.
Collapse
Affiliation(s)
- Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jia-Xin Li
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hong-Yan Liu
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xiang-Chao Luo
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tian-Yong Hu
- Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen 518172, China
| | - Guo-Hua Shi
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dong-Dong Xie
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hai-Feng Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen 518172, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
6
|
Fang Z, Zhang Q, Xiong W, Sun L, Tan B, Zhu M, Ma L, Zhang L, Zhu Y, Zhang C. Discovery of Tetronate-Containing Kongjuemycins from a Coral-Associated Actinomycete and Elucidation of Their Biosynthetic Origin. Org Lett 2023; 25:6346-6351. [PMID: 37606755 DOI: 10.1021/acs.orglett.3c02231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Tetronate antibiotics make up a growing family of natural products with a wide variety of biological activities. Herein, we report four new tetronates kongjuemycins (KJMs, 5-8) from a coral-associated actinomycete Pseudonocardia kongjuensis SCSIO 11457, and the identification and characterization of the KJM biosynthetic gene cluster (kjm) by heterologous expression, comparative genomic analysis, isotope labeling, and gene knockout studies. The biosynthesis of KJMs is demonstrated to harness diverse precursors from primary metabolism for building secondary metabolites.
Collapse
Affiliation(s)
- Zhuangjie Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Weiliang Xiong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Lili Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mengyi Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
7
|
Sánchez-Hidalgo M, García MJ, González I, Oves-Costales D, Genilloud O. Complete Genome Sequence Analysis of Kribbella sp. CA-293567 and Identification of the Kribbellichelins A & B and Sandramycin Biosynthetic Gene Clusters. Microorganisms 2023; 11:microorganisms11020265. [PMID: 36838228 PMCID: PMC9962454 DOI: 10.3390/microorganisms11020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Minor genera actinomycetes are considered a promising source of new secondary metabolites. The strain Kribbella sp. CA-293567 produces sandramycin and kribbellichelins A & B In this work, we describe the complete genome sequencing of this strain and the in silico identification of biosynthetic gene clusters (BGCs), focusing on the pathways encoding sandramycin and kribbellichelins A-B. We also present a comparative analysis of the biosynthetic potential of 38 publicly available genomes from Kribbella strains.
Collapse
|
8
|
Fang C, Zhang Q, Zhang W, Zhang C, Zhu Y. Discovery of Efrotomycin Congeners and Heterologous Expression-Based Insights into the Self-Resistance Mechanism. JOURNAL OF NATURAL PRODUCTS 2022; 85:2865-2872. [PMID: 36445346 DOI: 10.1021/acs.jnatprod.2c00986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Four new efrotomycins, A1-A4 (1-4), were isolated from the salt mine-derived Amycolatopsis cihanbeyliensis DSM 45679 and structurally determined. Efrotomycins A3 (3) and A4 (4) feature a tetrahydrofuran ring configured distinctly from known elfamycins. Heterologous expression of the efrotomycin gene cluster (efr BGC) in Streptomyces lividans SBT18 led to efrotomycin B1 (5), the yield of which was improved several fold upon introduction of the transporter gene efrT, a putative self-resistance determinant outside of the efr BGC.
Collapse
Affiliation(s)
- Chunyan Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
9
|
Two New Phenylhydrazone Derivatives from the Pearl River Estuary Sediment-Derived Streptomyces sp. SCSIO 40020. Mar Drugs 2022; 20:md20070449. [PMID: 35877742 PMCID: PMC9323291 DOI: 10.3390/md20070449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Two new phenylhydrazone derivatives and one new alkaloid, penzonemycins A–B (1–2) and demethylmycemycin A (3), together with three known compounds including an alkaloid (4) and two sesquiterpenoids (5–6), were isolated from the Streptomyces sp. SCSIO 40020 obtained from the Pearl River Estuary sediment. Their structures and absolute configurations were assigned by 1D/2D NMR, mass spectroscopy and X-ray crystallography. Compound 1 was evaluated in four human cancer cell lines by the SRB method and displayed weak cytotoxicity in three cancer cell lines, with IC50 values that ranged from 30.44 to 61.92 µM, which were comparable to those of the positive control cisplatin. Bioinformatic analysis of the putative biosynthetic gene cluster indicated a Japp–Klingemann coupling reaction involved in the hydrazone formation of 1 and 2.
Collapse
|