1
|
Sun Y, Abella L, Emge TJ, Zhu S, Li Y, Ferraro I, Li A, Stevenson S, Poblet JM, Rodríguez‐Fortea A, Zhang J. Inverse Electron Demand Diels-Alder Reaction on M 3N@C 80 (M=Lu, Sc): Reactivity and Reversibility Enable Chemical Separation of Metallofullerenes. Angew Chem Int Ed Engl 2025; 64:e202424776. [PMID: 39924446 PMCID: PMC12001181 DOI: 10.1002/anie.202424776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Endohedral metallofullerenes are chemically more inert compared to empty fullerenes, primarily due to their intramolecular electron transfer. In this work, we report an inverse electron demand Diels-Alder (IEDDA) reaction on M3N@C80 (M=Lu, Sc), where they show significantly higher reactivity than empty fullerenes. The molecular structures of the [4+2] cycloadducts were unambiguously characterized. Moreover, the cycloadducts can fully revert to pristine M3N@C80 via retro-cycloaddition upon thermal treatment. With the unusual reactivity and reversibility, the IEDDA reaction enables an effective separation approach for metallofullerenes from their soot extracts, opening path to efficient and economical scale-up synthesis of metallofullerenes in laboratory and industrial settings.
Collapse
Affiliation(s)
- Yue Sun
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Laura Abella
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel⋅lí Domingo 143007TarragonaSpain
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Sheng Zhu
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Yanbang Li
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Ian Ferraro
- Department of ChemistryUniversity of New Hampshire23 Academic WayDurham, NH03824USA
| | - Anyin Li
- Department of ChemistryUniversity of New Hampshire23 Academic WayDurham, NH03824USA
| | - Steven Stevenson
- Department of Chemistry and Biochemistry and FIRST Molecules CenterPurdue University Fort WayneFort WayneIN 46805USA
| | - Josep M. Poblet
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel⋅lí Domingo 143007TarragonaSpain
| | - Antonio Rodríguez‐Fortea
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel⋅lí Domingo 143007TarragonaSpain
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| |
Collapse
|
2
|
Yang S, Zhou X, Hu Y, Abella L, Yao YR, Peng P, Zhang Q, Rodríguez-Fortea A, Poblet JM, Li FF. Effects of Solvents on Reaction Products: Synthesis of Endohedral Metallofullerene Oxazoline and Epoxide. J Org Chem 2023; 88:4234-4243. [PMID: 36989519 DOI: 10.1021/acs.joc.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Herein, we performed the reactions of M3N@Ih-C80 (M = Sc and Lu) with the methanol (CH3OH) solution of TBAOH (note that both CH3O- and OH- are nucleophiles) in benzonitrile (PhCN) and dimethylformamide, respectively. It is found that OH- ions rather than CH3O- ions selectively attacked the fullerene cage to form the M3N@C80--O- intermediate. Although the fullerene cage is initially attacked by OH- in both PhCN and DMF solvents, the products are quite different. In PhCN, two isomeric Sc3N@Ih-C80 fullerooxazoline heterocyclic products (1 and 2) were synthesized. Whereas, in DMF, an epoxide of Lu3N@Ih-C80 (3) was obtained. The preference for fullerooxazoline formation over that of fullerene epoxy in PhCN is well explained by density functional theory calculations. Plausible reaction mechanisms for the formation of metallofullerene oxazoline and epoxide were proposed based on the experimental and theoretical results.
Collapse
Affiliation(s)
- Shaoting Yang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xinyi Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yajing Hu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Laura Abella
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Yang-Rong Yao
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Ping Peng
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qianyan Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Antonio Rodríguez-Fortea
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Fang-Fang Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
3
|
Shao G, Niu C, Liu HW, Yang H, Chen JS, Yao YR, Yang S, Wang GW. [60]Fullerene-Fused Cyclopentanes: Mechanosynthesis and Photovoltaic Application. Org Lett 2023; 25:1229-1234. [PMID: 36787186 DOI: 10.1021/acs.orglett.3c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The mechanochemical cascade reaction of [60]fullerene with 3-benzylidene succinimides, diethyl 2-benzylidene succinate, or 2-benzylidene succinonitrile in the presence of an inorganic base has been investigated under solvent-free and ball-milling conditions. This protocol provides an expedient method to afford various [60]fullerene-fused cyclopentanes, showing advantages of good substrate scope, short reaction time, and solvent-free and ambient reaction conditions. Furthermore, representative fullerene products have been applied in inverted planar perovskite solar cells as efficient cathode interlayers.
Collapse
Affiliation(s)
- Gang Shao
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chuang Niu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hong-Wei Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Huan Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jun-Shen Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yang-Rong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shangfeng Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
4
|
Sun Y, Qian C, Emge TJ, Li Y, Kopcha WP, Wang L, Zhang J. Synthesis of [60]- and [70]Fullerene-Fused Tetrahydroquinoxaline Derivatives by Oxidative [4 + 2] Cycloaddition with Unusual Reactivity and Regioselectivity. Org Lett 2022; 24:6417-6422. [PMID: 36036909 DOI: 10.1021/acs.orglett.2c02494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidative [4 + 2] reaction of o-phenylenediamine-derived disulfonamides with fullerene C60 and C70 is reported, in which electron-deficient reactants showed high reactivity. The reaction of C70 exhibited unusual regioselectivity, yielding a [5,6]-adduct as the major product, which was characterized by 1H, 13C NMR and single-crystal X-ray diffraction. DFT calculations revealed the reaction is an inverse-electron-demand Diels-Alder (IEDDA) reaction, and the [5,6]-adduct of C70 is a kinetic product.
Collapse
Affiliation(s)
- Yue Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, New Jersey 08854, United States
| | - Cheng Qian
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, New Jersey 08854, United States
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, New Jersey 08854, United States
| | - Yanbang Li
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, New Jersey 08854, United States
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, New Jersey 08854, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, New Jersey 08854, United States
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, New Jersey 08854, United States
| |
Collapse
|