1
|
Wang T, Lu Z, Li P. Catalyst-free reaction of 2-(4 H-benzo[ d][1,3]oxazin-4-yl)acrylates: synthesis of 1,2-dihydroquinolines and 2,3-dihydropyrroles. Chem Commun (Camb) 2024; 60:6933-6936. [PMID: 38884253 DOI: 10.1039/d4cc02156h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Catalyst-free annulations of 2-(4H-benzo[d][1,3]oxazin-4-yl)acrylates have been successfully achieved under mild conditions. Specifically, the reaction of 2-(4H-benzo[d][1,3]oxazin-4-yl)acrylates with sulfur ylides furnished various 1,2-dihydroquinolines in generally high yields. Furthermore, [3+2]-annulations of 2-(4H-benzo[d][1,3]oxazin-4-yl)acrylates with α,β-unsaturated imines afforded a broad scope of polysubstituted 2,3-dihydropyrroles with high efficiency.
Collapse
Affiliation(s)
- Tao Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Zhongyue Lu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Pengfei Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
2
|
Maestro A, Zurro M. Phosphine-catalysed transformations of ortho- and para-quinone methides. Org Biomol Chem 2023; 21:8244-8258. [PMID: 37807758 DOI: 10.1039/d3ob01276j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Organocatalytic methodologies for the derivatization of o-QM, p-QM and the analogous aza-QM have been recently developed and involve different catalytic systems such as phosphoric acids, thioureas, squaramides, NHC carbenes or chiral ammonium salts. Besides, phosphines, commonly used as ligands in metal-catalysed reactions, can be also used as organocatalysts. In this case, they are mainly involved as nucleophilic catalysts in reactions such as the Rauhut-Currier (RC) reaction. In this review, an analysis of the recent developments in racemic and enantioselective phosphine-catalysed transformations of o-QM, p-QM and aza-o-QM has been carried out.
Collapse
Affiliation(s)
- Aitor Maestro
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados "Lucio Lascaray" - Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Mercedes Zurro
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá (IRYCIS), 28805-Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
3
|
He C, Tang Y, Tang S, Sun J. Iridium-Catalyzed Diastereo- and Enantioselective [4 + 1] Cycloaddition of Hydroxyallyl Anilines with Sulfoxonium Ylides. Org Lett 2023. [PMID: 37319271 DOI: 10.1021/acs.orglett.3c01217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We present here an iridium-catalyzed diastereo- and enantioselective [4 + 1] cycloaddition reaction of hydroxyallyl anilines with sulfoxonium ylides under mild reaction conditions, leading to 3-vinyl indolines in moderate to good yields with excellent enantioselectivities. Control experiments disclosed a plausible reaction mechanism.
Collapse
Affiliation(s)
- Chunlan He
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yaping Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Tang S, Cheng Z, Zhang P, Shao Y, Sun J. Access to Chiral Tetrahydroquinazolines/1,3-Benzoxazines via Iridium-Catalyzed Asymmetric [4 + 2] Cycloaddition. Org Lett 2023; 25:3639-3643. [PMID: 37191318 DOI: 10.1021/acs.orglett.3c01004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
An iridium-catalyzed asymmetric [4 + 2] cycloaddition of 1,3,5-triazinanes with 2-(1-hydroxyallyl)anilines/2-(1-hydroxyallyl)phenols has been developed, providing a straightforward and efficient approach to a wide range of tetrahydroquinazolines in good yields and excellent enantioselectivities (up to >99% ee). Typically, chiral 1,3-benzoxazines, which are challenging substrates in asymmetric [4 + 2] cycloaddition, could be obtained in excellent enantioselectivities via this protocol.
Collapse
Affiliation(s)
- Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhangru Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Remote stereocontrol in the (4 + 2) cycloadditions of 1,7-zwitterions: Asymmetric synthesis of multifunctionalized tetrahydroquinoline derivatives. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
6
|
Chen L, Li P. Organocatalytic Regio- and Enantioselective Allylic Alkylation of Indolin-2-imines with MBH Carbonates toward 3-Allylindoles. J Org Chem 2023. [PMID: 36700934 DOI: 10.1021/acs.joc.2c02310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An organocatalytic asymmetric C3-allylic alkylation of indolone-2-imines with MBH carbonates has been developed for the first time. As opposed to previous reports, an "interrupted" annulation was achieved, affording 3-allylindoles in generally high yields with excellent stereoselectivities. The representative scale-up reaction and transformation of 3-allylindoles were examined. A possible mechanism was also proposed.
Collapse
Affiliation(s)
- Lunfeng Chen
- School of Resources and Environment, Harbin Institute of Technology, Harbin 150080, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
7
|
Wang T, Chen X, Li P. One‐pot Divergent Synthesis of Benzoxazines and Dihydroquinolines from Morita‐Baylis‐Hillman Alcohols. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Wang
- Southern University of Science and Technology Department of Chemistry Shenzhen CHINA
| | - Xuling Chen
- Southern University of Science and Technology Department of Chemistry Shenzhen CHINA
| | - Pengfei Li
- Southern University of Science and Technology Department of Chemistry 1088 Xueyuan Blvd., Nanshan district 518055 Shenzhen CHINA
| |
Collapse
|