1
|
Zhu M, Pi C, Wu Y, Cui X. Rhodium-Catalyzed Tandem Reaction of N-(Pivaloyloxy)acrylamides with 1,3-Diynes for the Synthesis of Furo[2,3- b]pyridines. Org Lett 2025. [PMID: 40387202 DOI: 10.1021/acs.orglett.5c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
We disclose a rhodium-catalyzed tandem reaction of N-(pivaloyloxy)acrylamides with 1,3-diynes for the efficient synthesis of furo[2,3-b]pyridines. This unique tandem reaction includes C-H activation, Lossen rearrangement, [4+2] annulation, and [3+2] annulation in "one pot", which features readily available substrates, broad functional group compatibility, and the ability to isolate pure products through simple filtration under ambient conditions with excellent regioselectivity, selectivity for mono- or diannulation, and intra- and intermolecular annulation selectivity. Furthermore, this synthetic protocol facilitates the rapid construction of a diverse library of blue-emitting molecules with high quantum yields, providing a valuable platform for developing advanced functional materials.
Collapse
Affiliation(s)
- Menghan Zhu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Pingyuan Laboratory, State Key Laboratory of Coking Coal Resources Green Exploitation and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Pingyuan Laboratory, State Key Laboratory of Coking Coal Resources Green Exploitation and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Pingyuan Laboratory, State Key Laboratory of Coking Coal Resources Green Exploitation and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Pingyuan Laboratory, State Key Laboratory of Coking Coal Resources Green Exploitation and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
2
|
Song JL, Yang ZF, Fang S, Chen WL, Ye LB, Liu X, Shu B. Rhodium-catalyzed C-H α-fluoroalkenylation/annulation of β-ketosulfoxonium ylides with 2,2-difluorovinyl tosylate/oxadiazolones. Chem Commun (Camb) 2024; 60:15000-15003. [PMID: 39600176 DOI: 10.1039/d4cc05621c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A Rh(III)-catalyzed C-H α-fluoroalkenylation/annulation of β-ketosulfoxonium ylides with 2,2-difluorovinyl tosylate/oxadiazolones was realized, which afforded various o-fluoroalkenylation β-ketosulfoxonium ylides with high Z-selectivity and diverse oxadiazolone fused-isoquinolines. This protocol featured mild conditions, broad substrate scope, and functional-group compatibility. In addition, scale-up synthesis, related applications and preliminary mechanistic explorations were also accomplished.
Collapse
Affiliation(s)
- Jia-Lin Song
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Zi-Feng Yang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P. R. China.
| | - Sheng Fang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Wang-Liang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Lian-Bao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P. R. China.
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Kumar S, Kanchupalli V. Synthesis of γ-Spirolactams via Rh(III)-Catalyzed C-H Activation/Directing Group Migration/Dearomatization/Spiroannulation of Indoles with 1,3-Enynes. Org Lett 2024; 26:8975-8981. [PMID: 39207739 DOI: 10.1021/acs.orglett.4c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
1,3-Enynes are valuable coupling partners in transition-metal-catalyzed C-H functionalizations. Certainly, aliphatic-substituted 1,3-enynes have been thoroughly investigated in C-H functionalizations, whereas aromatic-substituted 1,3-enynes remain underexplored. Herein, we report the realization of this goal, where we achieve an atom-economical protocol for the synthesis of γ-spirolactams via Rh(III)-catalyzed C-H functionalization of N-carbamoylindoles with 1,3-enynes. The reaction proceeds through a unique cascade strategy, such as C-H activation/directing group (DG) migration/indole dearomatization/spiroannulation, to access novel and synthetically challenging spiro[indoline-2,2'-pyrrolidin]-5'-one scaffolds. Moreover, the isolation of intermediate and mechanistic and ESI-HRMS studies further provide valuable insights into the proposed catalytic cycle.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
4
|
Ghosh S, Das D, Mandal RD, Das AR. Pragmatic Access to Hybrid Quinoxaline Scaffold Mediated by Elemental Sulfur Enabling Actualization to π-Extended and Aza-Annulated Heterocyclic Units. J Org Chem 2024; 89:15358-15363. [PMID: 39333838 DOI: 10.1021/acs.joc.4c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
A metal-free approach for synthesizing hybrid quinoxaline derivatives from sulfoxonium ylide and a 1,5-bis-nucleophilic N-heterocycle mediated by elemental sulfur is presented to illuminate the [5+1] cascade cyclization sequence. Large-scale synthesis and postsynthetic functionalizations for the annulative π-extension and intramolecular aza-annulation reactions reveal the potential utility and actualize the fabricated approach.
Collapse
Affiliation(s)
- Swarnali Ghosh
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Dwaipayan Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Rahul Dev Mandal
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Asish R Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
5
|
Mi E, Zhou L, Tong Y, Qiu X, Zeng X, Li J, Xiong B. Copper-Mediated Cyclization of Terminal Alkynes with CF 3-Imidoyl Sulfoxonium Ylides To Construct 5-Trifluoromethylpyrroles. Org Lett 2024; 26:2249-2254. [PMID: 38451534 DOI: 10.1021/acs.orglett.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
A copper-mediated [3 + 2] cyclization of CF3-imidoyl sulfoxonium ylides and terminal alkynes has been demonstrated. This work provides a practical approach for assembling 5-trifluoromethylpyrroles with the merits of a broad substrate scope, good functional tolerance, and mild reaction conditions. Control experiments and DFT studies indicate that this reaction may involve the addition of π-bonds of terminal alkynes by copper-carbene radicals and hydrogen migration.
Collapse
Affiliation(s)
- E Mi
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Li Zhou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yixin Tong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Jinlong Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Biao Xiong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
6
|
Li J, Tanaka H, Imagawa T, Tsushima T, Nakamoto M, Tan J, Yoshida H. Ethynyl-B(dan) in [3+2] Cycloaddition and Larock Indole Synthesis: Synthesis of Stable Boron-Containing Heteroaromatic Compounds. Chemistry 2024; 30:e202303403. [PMID: 38109084 DOI: 10.1002/chem.202303403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 12/19/2023]
Abstract
The cycloaddition of nitrile oxides with ethynyl-B(dan) (dan=naphthalene-1,8-diaminato) allowed the facile preparation of diverse isoxazolyl-B(dan) compounds, all of which displayed excellent protodeborylation-resistant properties. The dan-installation on the boron center proves vital to the high stability of the products as well as the perfect regioselectivity arising from hydrogen bond-directed orientation in the cycloaddition. The diminished boron-Lewis acidity of ethynyl-B(dan) also renders it amenable to azide-alkyne cycloaddition, Larock indole synthesis and related heteroannulations. The obtained boron-containing triazole, indoles, benzofuran and indenone exhibit sufficient resistance toward protodeborylation. Despite the commonly accepted transmetalation-inactive property derived from the diminished Lewis acidity, the synthesized heteroaryl-B(dan) compound was still found to be convertible to the oligoarene via sequential Suzuki-Miyaura coupling.
Collapse
Affiliation(s)
- Jialun Li
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Hideya Tanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Taiki Imagawa
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Takumi Tsushima
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Masaaki Nakamoto
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Jiajing Tan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing, 100029, China
| | - Hiroto Yoshida
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
7
|
Saha S, Bhattacharyya H, Karjee P, Debnath B, Verma K, Punniyamurthy T. Expedient C-H allylation of sulfoxonium ylides: merging C-H and C-C/C-het bond activation. Chem Commun (Camb) 2023; 59:14173-14176. [PMID: 37955606 DOI: 10.1039/d3cc04507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Sulfoxonium ylide chelation-assisted C-H allylation of arenes has been accomplished utilizing strained vinyl carbo/heterocycles as the allyl surrogates via sequential C-H and C-C/het bond activation. Broad substrate scope, Co-catalysis, selectivity, and late-stage drug mutation are the important practical features.
Collapse
Affiliation(s)
- Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Hemanga Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Kshitiz Verma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
8
|
Yang Q, Bai J, Yang H, Yao Y, Yao Y, Sun J, Sun S. [Cp*IrCl 2] 2-Catalyzed Amidocarbonation of Olefins with Sulfoxonium Ylides toward Functionalized Isoindolin-1-ones. Org Lett 2023; 25:7148-7153. [PMID: 37751295 DOI: 10.1021/acs.orglett.3c02654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
A [Cp*IrCl2]2-catalyzed amidocarbonation of olefins with sulfoxonium ylides has been developed to generate diverse biologically important isoindolin-1-ones in high efficiency under mild reaction conditions. Mechanism studies indicated that this cascade reaction was triggered by amino-iridation of the olefin unit to generate iridacycle, followed by formal migratory insertion with sulfoxonium ylides. This newly developed method features broad substrate scopes and operational simplicity.
Collapse
Affiliation(s)
- Qi Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Junxue Bai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Han Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yang Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Scince, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
- Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Song Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| |
Collapse
|
9
|
Siddiqui SK, Ramana CV, Gonnade RG. Crystal structure of 1-(4-bromo-phen-yl)but-3-yn-1-one. Acta Crystallogr E Crystallogr Commun 2023; 79:633-636. [PMID: 37601573 PMCID: PMC10439427 DOI: 10.1107/s205698902300508x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 08/22/2023]
Abstract
The title compound, 1-(4-bromo-phen-yl)but-3-yn-1-one, C10H7BrO, crystallizes in the monoclinic space group P21/n with one mol-ecule in the asymmetric unit. The structure displays a planar geometry. The crystal structure is consolidated by C-H⋯O hydrogen bonding and a short C=O⋯C≡C (acetyl-ene) contacts. Hirshfeld surface analysis indicates that H⋯H, C⋯H/H⋯C and H⋯Br/Br⋯H inter-actions play a more important role in consolidating the crystal structure compared to H⋯O/O⋯H and C⋯C contacts.
Collapse
Affiliation(s)
- Shaziyaparveen K. Siddiqui
- Division of Organic Synthesis, CSIR-National Chemical Laboratory, Dr. Homi, Bhabha Road, Pashan, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - C. V. Ramana
- Division of Organic Synthesis, CSIR-National Chemical Laboratory, Dr. Homi, Bhabha Road, Pashan, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| |
Collapse
|
10
|
Saha S, Debnath B, Talukdar K, Karjee P, Mandal S, Punniyamurthy T. Cascade C-H Activation/Annulation of Sulfoxonium Ylides with Vinyl Cyclopropanes: Access to Cyclopropane-Fused α-Tetralones. Org Lett 2023; 25:3352-3357. [PMID: 37140969 DOI: 10.1021/acs.orglett.3c00650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rh-catalyzed weak and traceless directing-group-assisted cascade C-H activation and annulation of sulfoxonium ylides with vinyl cyclopropanes as a coupling partner have been accomplished to furnish functionalized cyclopropane-fused tetralones at moderate temperature. The C-C bond formation, cyclopropanation, functional group tolerance, late-stage diversifications of drug molecules, and scale-up are the important practical features.
Collapse
Affiliation(s)
- Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
11
|
Pati BV, Puthalath NN, Banjare SK, Nanda T, Ravikumar PC. Transition metal-catalyzed C-H/C-C activation and coupling with 1,3-diyne. Org Biomol Chem 2023; 21:2842-2869. [PMID: 36917476 DOI: 10.1039/d3ob00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This review provides a broad overview of the recent developments in the field of transition metal-catalyzed C-H/C-C bond activation and coupling with 1,3-diyne for assembling alkynylated heterocycles, bis-heterocycles, and 1,3-enynes. Transition metal-catalyzed inert bond (C-H/C-C) activation has been the focus of attention among synthetic chemists in recent times. Enormous developments have taken place in C-H/C-C bond activation chemistry in the last two decades. In recent years the use of 2π-unsaturated units as coupling partners for the synthesis of heterocycles through C-H/C-C bond activation and annulation sequence has received immense attention. Among the unsaturated units employed for assembling heterocycles, the use of 1,3-diynes has garnered significant attention due to its ability to render bis-heterocycles in a straightforward manner. The C-H bond activation and coupling with 1,3-diyne has been very much explored in recent years. However, the development of strategies for the use of 1,3-diynes in the analogous C-C bond activation chemistry is less explored. Earlier methods employed to assemble bis-heterocycle used heterocycles that were preformed and pre-functionalized via transition metal-catalyzed coupling reactions. The expensive pre-functionalized halo-heterocycles and sensitive and expensive heterocyclic metal reagents limit its broad application. However, the transition metal-catalyzed C-H activation obviates the need for expensive heterocyclic metal reagents and pre-functionalized halo-heterocycles. The C-H bond activation strategy makes use of C-H bonds as functional groups for effecting the transformation. This renders the overall synthetic sequence both step and cost economic. Hence, this strategy of C-H activation and subsequent reaction with 1,3-diyne could be used for the larger-scale synthesis of chemicals in the pharmaceutical industry. Despite these advances, there is still the possibility of exploration of earth-abundant and cost-effective first-row transition metals (Ni, Cu, Mn. Fe, etc.) for the synthesis of bis-heterocycles. Moreover, the Cp*-ligand-free, simple metal-salt-mediated synthesis of bis-heterocycles is also less explored. Thus, more exploration of reaction conditions for the Cp*-free synthesis of bis-heterocycles is called for. We hope this review will inspire scientists to investigate these unexplored domains.
Collapse
Affiliation(s)
- Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Nitha Nahan Puthalath
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
12
|
Kumar S, Borkar V, Nunewar S, Yadav S, Kanchupalli V. Rh(III)-Catalyzed C-H Annulation of Sulfoxonium Ylides and 1,3-Diynes: A Rapid Access to Alkynyl-1-Naphthol Derivatives. Chem Asian J 2023; 18:e202201201. [PMID: 36914590 DOI: 10.1002/asia.202201201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
An effective redox-neutral strategy to synthesize aryl/alkynyl and alkyl/alkynyl substituted 1-naphthol derivatives has been efficaciously developed by Rh(III)-catalyzed [4+2]-annulation of sulfoxonium ylides and 1,3-diynes with excellent regio- and chemoselectivity. Subsequently, the same strategy was extended to furnish various unsymmetrical binaphthol motifs in one-pot manner. Interestingly, the TMS-derived 1,3-diyne predominantly delivered the 3-alkynyl-1-naphthol via desilylation pathway. The salient features such as traceless directing group, broad substrate scope, good functional group tolerance, and operationally simple conditions made the present protocol more valuable and appealing.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Vaishnavi Borkar
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Saiprasad Nunewar
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Shashank Yadav
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Vinaykumar Kanchupalli
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| |
Collapse
|
13
|
Kumar S, Kumar Sabbi T, Pingale R, Girase P, Kanchupalli V. 1,3-Diynes: A Versatile Precursor in Transition-Metal Catalyzed (Mediated) C-H Functionalizations. CHEM REC 2023; 23:e202200228. [PMID: 36512645 DOI: 10.1002/tcr.202200228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Transition metal-catalyzed C-H functionalization of diverse arenes with alkyne units has attracted enormous attention for decades since they provide straightforward access to various functionalization/annulations, which are commonly present in bioactive compounds and natural products. Recently, conjugated alkynes (1,3-diynes) have been utilized as key coupling partner in many C-H activation reactions due to their versatile characteristic properties. The presence of two C≡C bonds in conjugated 1,3-diyne brings the new diversity in synthetic transformations, such as chemo-, regioselective pathways, mono-bis functionalizations, cascade annulations, etc. Herein, we summarized the latest developments in the realm of transition-metal-catalyzed C-H functionalizations of diverse arenes with 1,3-diynes. Moreover, we highlighted the diverse transformations, conditions, mechanisms and applications of the corresponding reaction in detail.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Tharun Kumar Sabbi
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Rasika Pingale
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Pradeep Girase
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Vinaykumar Kanchupalli
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| |
Collapse
|
14
|
Dhillon P, Anaspure P, Wiklander JG, Kathiravan S, Nicholls IA. Diyne-steered switchable regioselectivity in cobalt(II)-catalysed C(sp 2)-H activation of amides with unsymmetrical 1,3-diynes. Org Biomol Chem 2023; 21:1942-1951. [PMID: 36753336 DOI: 10.1039/d2ob02193e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regiochemical outcome of a cobalt(II) catalysed C-H activation reaction of aminoquinoline benzamides with unsymmetrical 1,3-diynes under relatively mild reaction conditions can be steered through the choice of diyne. The choice of diyne provides access to either 3- or 4-hydroxyalkyl isoquinolinones, paving the way for the synthesis of more highly elaborate isoquinolines.
Collapse
Affiliation(s)
- Prakriti Dhillon
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar SE-39182, Sweden.
| | - Prasad Anaspure
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar SE-39182, Sweden.
| | - Jesper G Wiklander
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar SE-39182, Sweden.
| | - Subban Kathiravan
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar SE-39182, Sweden.
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar SE-39182, Sweden.
| |
Collapse
|
15
|
Phukon J, Bhorali P, Changmai S, Gogoi S. Hydroxyl-Directed Ru(II)-Catalyzed Synthesis of Fused Dihydrofurans Using 1,4-Dioxane and Sulfoxonium Ylides as Annulating Agents. Org Lett 2023; 25:215-219. [PMID: 36594667 DOI: 10.1021/acs.orglett.2c04068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An unprecedented annulation reaction is developed for the synthesis of dihydrofuran-fused compounds. In this Ru-catalyzed hydroxyl-group-directed reaction, easily affordable sulfoxonium ylides and 1,4-dioxane were used as the annulating partners. This is the first example of the use of 1,4-dioxane as a methylene source to construct a heterocyclic scaffold. A wide range of dihydrofuran0fused coumarins and naphthalenes were synthesized using this three-component reaction.
Collapse
Affiliation(s)
- Jyotshna Phukon
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratiksha Bhorali
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumi Changmai
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Nunewar S, Kumar S, Meshram AW, Kanchupalli V. Ru(II)-Catalyzed C–H Functionalization of 2-Arylbenzimidazoles with Iodonium Ylides: A Straightforward Access to Bridgehead Polycyclic N-Heterocycles. J Org Chem 2022; 87:13757-13762. [DOI: 10.1021/acs.joc.2c01429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Saiprasad Nunewar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Sanjeev Kumar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Akhilesh Waman Meshram
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Vinaykumar Kanchupalli
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| |
Collapse
|
17
|
Li L, Liu XL, Liang JY, He YY, Ma AJ, Wang WF, Peng JB. Palladium Catalyzed Dicarbonylation of α-Iodo-Substituted Alkylidenecyclopropanes: Synthesis of Carbamoyl Substituted Indenones. Org Lett 2022; 24:5624-5628. [PMID: 35894628 DOI: 10.1021/acs.orglett.2c02399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium catalyzed dicarbonylation of α-iodo-substituted ACPs for the synthesis of carbamoyl substituted indenones has been developed. Two carbonyl groups were incorporated into the product with the cleavage of the proximal C-C bond of the ACPs. A broad range of carbamoyl substituted indenones were efficiently prepared in good to excellent yields.
Collapse
Affiliation(s)
- Lin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xin-Lian Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Yan Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Yong-Yu He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Wei-Feng Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China.,State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|