1
|
Guo B, Yan X, Wang Z, Shen C, Chen W, Cen S, Peng Q, Zhang Z. Enhanced Pyridine-Oxazoline Ligand-Enabled Pd(II)-Catalyzed Aminoacetoxylation of Alkenes for the Asymmetric Synthesis of Biaryl-Bridged 7-Membered N-Heterocycles and Atropisomers. J Am Chem Soc 2025; 147:12614-12626. [PMID: 40167529 DOI: 10.1021/jacs.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A new class of binaphthyl unit-enhanced pyridine-oxazoline ligands was developed to promote the Pd-catalyzed enantioselective intramolecular 7-exo aminoacetoxylation of unactivated biaryl alkenes. Biaryl-bridged 7-membered N-heterocycles bearing a chiral center were obtained in good yields with excellent enantioselectivities (up to 99:1 er). Computational investigations on a series of biaryl-bridged 7-membered rings provided insights into the rotational barrier of the potentially chiral biaryl unit by the substituent effect including the heteroatom, the protecting group, and the chiral center. The kinetic resolution of racemic axially chiral biaryls via intramolecular enantioselective aminoacetoxylation of alkenes has also been achieved, affording previously inaccessible biaryl-bridged 7-membered N-heterocycles bearing both a chiral center and a chiral axis, as well as axially chiral biaryl amino alcohols.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xiaoyang Yan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zicong Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chen Shen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Weifu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shouyi Cen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Cheng S, Liang Y, Zhang T, Chen M, Li J, Zhang X, Luo S, Zhu Q. Regiospecific 2,3-Dialkylindole Synthesis Enabled by Alkylpalladium 1,2-Migration to In Situ Formed Aldimine. Angew Chem Int Ed Engl 2025:e202501582. [PMID: 40133220 DOI: 10.1002/anie.202501582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 03/27/2025]
Abstract
2,3-Dialkylindoles play crucial roles in natural products and pharmaceuticals, but the step-efficient and regioselective construction of such privileged structures remains a long-standing challenge. Here, we report a regiospecific non-Fischer indole synthesis through chemoselective 1,2-migratory addition of alkylpalladium to an aldimine intermediate, formed in situ through a palladium hydride-triggered sequential isocyanide and intramolecular olefin insertion. This unprecedented 1,2-migratory addition leads to formal C═C bond cleavage and isocyano carbon insertion between the two sp2 carbons, offering a novel approach to specific 2,3-dialkyl substituted N─H free indoles from readily available alkyl substituted 1-isocyano-2-vinylbenzenes.
Collapse
Affiliation(s)
- Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yingxiang Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Tao Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Meiling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Xiaohan Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
3
|
Zhu B, Yuan W, Tu T, Dai G, Zhou L, Ren S, Yang X. Access to Chiral Bridged Biaryls via Brønsted Acid-Catalyzed Asymmetric Addition of Alcohols to Fluoroalkylated Biaryl Oxazepines. Org Lett 2025; 27:1250-1255. [PMID: 39851078 DOI: 10.1021/acs.orglett.4c04813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
We disclose herein a chiral phosphoric-acid-catalyzed enantioselective addition reaction of alcohols to fluoroalkylated biaryl 1,3-oxoazepines, which furnished a wide range of bridged biaryls bearing a fluoroalkylated quaternary carbon stereocenter on the seven-membered ring in high yields (up to 99%) with excellent enantioselectivities (up to 98% ee). Our method can be used for the modification of several natural products and bioactive molecules. Preliminary studies revealed that the products obtained in this reaction exhibit good in vitro bioactivities against two plant pathogens.
Collapse
Affiliation(s)
- Bowen Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wei Yuan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ting Tu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Guimei Dai
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 21004, China
| | - Shichao Ren
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Zhang WF, Lu CD. Stereoselective Enesulfinamide-Sulfinylimine Tautomerization of β,β-Disubstituted Enesulfinamides. Org Lett 2024; 26:10999-11004. [PMID: 39631841 DOI: 10.1021/acs.orglett.4c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In the presence of cesium fluoride and organosilicon reagent, β,β-disubstituted NH-enesulfinamides undergo stereoselective enesulfinamide-sulfinylimine tautomerization at room temperature, resulting in the formation of α-branched N-sulfinyl ketimines in good yields with high stereoselectivity. A variety of acyclic ketone surrogates α-substituted with two electronically and sterically similar groups (e.g., methyl and ethyl), which are typically challenging to access through conventional protocols involving stereoselective protonation of enolates and their equivalents, have been effectively synthesized.
Collapse
Affiliation(s)
- Wan-Fu Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
- Southwest United Graduate School, Kunming, Yunnan 650092, China
| |
Collapse
|
5
|
Cheng H, Liu R, Fang S, Li Z, Zhang D, Zhang X, Chen W, Chen H, Kang L, Wang J, Xu Y, Song S, Shao L. Synthesis of easily-modified and useful dibenzo-[ b,d]azepines by palladium(II)-catalyzed cyclization/addition with a green solvent. Chem Commun (Camb) 2024; 60:3587-3590. [PMID: 38470314 DOI: 10.1039/d3cc06321f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
A novel strategy in which palladium(II)-catalyzed tandem cyclization is used to obtain N-heterocyclic architectures containing a seven-membered ring has been developed and used to synthesize a series of derivatives. The reaction uses an eco-friendly mixed solvent (water : EtOH = 2 : 1) instead of DMSO and maintains a high yield (91%). Its potential application value and reaction mechanism have also been explored.
Collapse
Affiliation(s)
- Hua Cheng
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China.
- China Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China.
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | - Rongqi Liu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China.
| | - Shengyang Fang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China.
| | - Zixiang Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China.
| | - Denggao Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China.
| | - Xi Zhang
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | - Wenfei Chen
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Huixin Chen
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Leyi Kang
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | - Juan Wang
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Yulong Xu
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | - Shaoli Song
- China Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China.
| | - Liming Shao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China.
| |
Collapse
|
6
|
Zhang HH, Li TZ, Liu SJ, Shi F. Catalytic Asymmetric Synthesis of Atropisomers Bearing Multiple Chiral Elements: An Emerging Field. Angew Chem Int Ed Engl 2024; 63:e202311053. [PMID: 37917574 DOI: 10.1002/anie.202311053] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
With the rapid development of asymmetric catalysis, the demand for the enantioselective synthesis of complex and diverse molecules with different chiral elements is increasing. Owing to the unique features of atropisomerism, the catalytic asymmetric synthesis of atropisomers has attracted a considerable interest from the chemical science community. In particular, introducing additional chiral elements, such as carbon centered chirality, heteroatomic chirality, planar chirality, and helical chirality, into atropisomers provides an opportunity to incorporate new properties into axially chiral compounds, thus expanding the potential applications of atropisomers. Thus, it is important to perform catalytic asymmetric transformations to synthesize atropisomers bearing multiple chiral elements. In spite of challenges in such transformations, in recent years, chemists have devised powerful strategies under asymmetric organocatalysis or metal catalysis, synthesizing a wide range of enantioenriched atropisomers bearing multiple chiral elements. Therefore, the catalytic asymmetric synthesis of atropisomers bearing multiple chiral elements has become an emerging field. This review summarizes the rapid progress in this field and indicates challenges, thereby promoting this field to a new horizon.
Collapse
Affiliation(s)
- Hong-Hao Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Tian-Zhen Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Si-Jia Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Feng Shi
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
7
|
Wang X, Luo Y, Zhao J, Luo S. CPA-catalyzed asymmetric domino thia-Michael/aldol reactions for simultaneous chiral center and axial chirality formation. Org Biomol Chem 2023; 21:6697-6701. [PMID: 37554057 DOI: 10.1039/d3ob01087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A highly enantio- and diastereoselective domino thia-Michael/aldol reaction applying 5H-dibenzo[a,c][7]annulen-5-one as a Michael acceptor, catalyzed by a chiral phosphoric acid (CPA), has been developed. The bridged biaryl adduct contains multiple stereogenic centers in the bridging linkage as well as a thermodynamically controlled stereogenic axis. The energy difference between the two atropodiastereomers is about 9.1 kcal mol-1, which accounts for the observed excellent diastereoselectivity (>20 : 1).
Collapse
Affiliation(s)
- Xilong Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yu Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jiaji Zhao
- School of Medicine and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528400, China.
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
8
|
Kotwal N, Tamanna, Chauhan P. Catalytic asymmetric synthesis of medium-sized bridged biaryls. Chem Commun (Camb) 2022; 58:11031-11044. [PMID: 36124624 DOI: 10.1039/d2cc04000j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the persistent presence of medium-sized (seven- to nine-membered) scaffolds in natural products and biologically active molecules, their asymmetric syntheses have always been considered a formidable task; therefore, they have remained underdeveloped when compared to the enantioselective synthesis of five- and six-membered ring scaffolds. One important class of such medium-sized ring frameworks includes seven- to nine-membered biaryl bridged carbo- and heterocycles. These medium-ring-sized biaryl frameworks possess more configurational stability than the related smaller ring structures and are common features of valuable natural products, bioactive compounds, chiral catalysts, and molecular motors. Due to these exciting properties and broad applications, over the last few years, the catalytic enantioselective synthesis of medium-sized bridged biaryls has seen an upsurge. This highlight article describes the development of organocatalysed and transition-metal catalysed transformations for procuring seven-, eight-, and nine-membered bridged biaryls bearing a chiral axis/one or more asymmetric carbon centres.
Collapse
Affiliation(s)
- Namrata Kotwal
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221 J&K, India.
| | - Tamanna
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221 J&K, India.
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221 J&K, India.
| |
Collapse
|