1
|
Chen Y, Mao X, Li MM, Ding W. Visible Light Photoredox-Catalyzed Radical Defluorinative Arylation of α-Trifluoromethyl Alkenes with Aryl Chlorides. J Org Chem 2025; 90:3391-3403. [PMID: 40011037 DOI: 10.1021/acs.joc.4c03088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Photocatalytic defluorinative cross-coupling reactions of α-trifluoromethyl alkenes with diverse radical precursors have emerged as a powerful strategy for the synthesis of gem-difluoroalkenes. However, the radical defluorinative arylation is relatively rare due to the limitation of aryl radical precursors. Aryl chlorides, as ideal candidates, remain a large challenge in this reaction because of the chemical inertness of the C(sp2)-Cl bond and their high negative reduction potential. Herein, we report a radical defluorinative arylation of α-trifluoromethyl alkenes with aryl chlorides as aryl radical precursors through a consecutive photoinduced electron transfer (ConPET) process. This protocol features mild conditions, operational simplicity, wide substrate scope, and functional group tolerance, producing a diverse range of benzylic gem-difluoroalkenes in moderate to good yields. The scale-up reaction and the valuable transformations of products demonstrate the great potential applications of this approach.
Collapse
Affiliation(s)
- Yumeng Chen
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xudong Mao
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao-Miao Li
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wei Ding
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
2
|
Kaur K, Mandal R, Walensky JR, Gallou F, Handa S. Electrocatalytic Micelle-Driven Hydrodefluorination for Accessing Unprotected Monofluorinated Indoles. Angew Chem Int Ed Engl 2025; 64:e202416132. [PMID: 39754753 DOI: 10.1002/anie.202416132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/06/2025]
Abstract
Toxic organic solvents and electrolytes, traditionally indispensable for electro-organic synthesis, are now being reconsidered. In developing more sustainable electro-organic synthesis, we've harnessed the aqueous micelles as solvents and electrolyte-like structures when deformed under an electric field. The technology is showcased in synthetically highly valued hydrodefluorination reactions of difluorinated indoles. This mild electrosynthetic method produces monofluorinated unprotected indole scaffolds. Our approach minimizes waste and enhances atom economy, reducing reliance on expensive and hazardous solvents and electrolytes. The surfactant's potential for recycling was verified for two cycles. Cyclic voltammetry analysis has corroborated that PS-750-M micelles in water establish a more efficient platform for hydrodefluorination. Our technology simplifies the production of monofluorinated indoles, which are crucial for many drug-like molecules.
Collapse
Affiliation(s)
- Karanjeet Kaur
- Department of Chemistry, University of Missouri, 601 S College Ave, Columbia, MO 65211, USA
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, 40292, KY, USA
| | - Raki Mandal
- Department of Chemistry, University of Missouri, 601 S College Ave, Columbia, MO 65211, USA
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, 601 S College Ave, Columbia, MO 65211, USA
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Sachin Handa
- Department of Chemistry, University of Missouri, 601 S College Ave, Columbia, MO 65211, USA
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, 40292, KY, USA
| |
Collapse
|
3
|
Wei X, Zhang Y, Lin R, Zhu Q, Xie X, Zhang Y, Fang W, Chen Z. Transition-Metal-Free Late-Stage Decarboxylative gem-Difluoroallylation of Primary Alkyl Acids. J Org Chem 2024; 89:15234-15247. [PMID: 39377598 DOI: 10.1021/acs.joc.4c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A transition-metal-free late-stage decarboxylative gem-difluoroallylation of carboxylic acids with α-trifluoromethyl alkenes has been described by the use of organo-photoredox catalysis. Both primary alkyl and heteroaryl acids were readily incorporated. This approach merits feedstock materials, mild reaction conditions, and wide functionality tolerance. The synthetic utility of this approach has been highlighted by the late-stage functionalization of a variety of acid-containing natural products and drug molecules.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qi Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yumeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
4
|
Lian F, Li JL, Xu K. When transition-metal catalysis meets electrosynthesis: a recent update. Org Biomol Chem 2024; 22:4390-4419. [PMID: 38771266 DOI: 10.1039/d4ob00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
While aiming at sustainable synthesis, organic electrosynthesis has attracted increasing attention in the past few years. In parallel, with a deeper understanding of catalyst and ligand design, 3d transition-metal catalysis allows the conception of more straightforward synthetic routes in a cost-effective fashion. Owing to their intrinsic advantages, the merger of organic electrosynthesis with 3d transition-metal catalysis has offered huge opportunities for conceptually novel transformations while limiting ecological footprint. This review summarizes the key advancements in this direction published in the recent two years, with specific focus placed on strategy design and mechanistic aspects.
Collapse
Affiliation(s)
- Fei Lian
- School of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China.
| | - Jiu-Ling Li
- School of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China.
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
5
|
Czaikowski ME, Anferov SW, Anderson JS. Metal-ligand cooperativity in chemical electrosynthesis. CHEM CATALYSIS 2024; 4:100922. [PMID: 38799408 PMCID: PMC11115383 DOI: 10.1016/j.checat.2024.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Electrochemistry has been an increasingly useful tool for organic synthesis, as it can selectively generate reactive intermediates under mild conditions using an applied potential. Concurrently, synergistic activity of a metal and a ligand has been used in thermal catalysis and electrocatalytic renewable fuel generation for substrate selectivity and improved catalyst activity. Combining these synthetic strategies is an attractive approach for mild, selective, and sustainable electrosynthesis. This perspective discusses examples of metal-ligand synergistic catalysis in electrochemical applications in organic and organometallic synthesis. The range of reactions and ligand design principles illustrates many opportunities for further discovery in this area and the potential for far-reaching synthetic benefits.
Collapse
Affiliation(s)
- Maia E. Czaikowski
- Department of Chemistry, The University of Chicago, Chicago, IL 60627, USA
- These authors contributed equally
| | - Sophie W. Anferov
- Department of Chemistry, The University of Chicago, Chicago, IL 60627, USA
- These authors contributed equally
| | - John S. Anderson
- Department of Chemistry, The University of Chicago, Chicago, IL 60627, USA
| |
Collapse
|
6
|
Chen W, Yu L, Pan Y, Ni S, Wang Y. Electrochemical Nickel-Catalyzed 1,2-Diarylation of 1,3-Dienes. Org Lett 2023; 25:9225-9230. [PMID: 38113061 DOI: 10.1021/acs.orglett.3c03936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Due to the presence of carbon-carbon double bonds, 1,3-dienes exhibit great reactivity. A protocol for the site-selective diarylation of terminal 1,3-dienes is reported here. The transformation is facilitated by the Ni catalyst without the need for additional ligands, utilizing an electrochemical setup. Preliminary results indicate that by introducing chiral ligands moderate enantioselective diarylation products can be obtained. This method affords diversely substituted diarylated products that occur as structural motifs in various natural products.
Collapse
Affiliation(s)
- Wangzhe Chen
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Yu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Blé-González EA, Isbel SR, Ojo OS, Hillesheim PC, Zeller M, Bugarin A. Regiodivergent sulfonylation of terminal olefins via dearomative rearrangement. NEW J CHEM 2023; 47:17020-17025. [PMID: 38094749 PMCID: PMC10714357 DOI: 10.1039/d3nj03595f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Sulfones are fascinating and highly used functional groups, but current syntheses still have limitations. Here, a regiodivergent transition metal-free approach towards sulfones [(E)-allylic sulfones and α-sulfonyl-methyl styrenes] is reported. The method employs commercially available olefins, bases, additives, solvents, and sodium sulfinates (RSO2Na) and produces adducts in good yields. Considering that up to 4 reactions (bromination, dearomative rearrangement, E2, and SN2) are happening, this approach is very efficient. The structures of key adducts were confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Ever A Blé-González
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida, 33965, USA
| | - Stephen R Isbel
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida, 33965, USA
| | - Olatunji S Ojo
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Patrick C Hillesheim
- Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida, 34142, USA
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Alejandro Bugarin
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida, 33965, USA
| |
Collapse
|
8
|
Hu YY, Xu XQ, Deng WC, Liang RX, Jia YX. Nickel-Catalyzed Enantioselective Dearomative Heck-Reductive Allylic Defluorination Reaction of Indoles. Org Lett 2023; 25:6122-6127. [PMID: 37578397 DOI: 10.1021/acs.orglett.3c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Herein, we describe a nickel-catalyzed asymmetric dearomative aryl-difluoroallylation reaction of indoles with α-trifluoromethyl alkenes as an electrophilic coupling partner. The reaction proceeds via a cascade sequence involving dearomative Heck cyclization and reductive allylic defluorination. A series of gem-difluoroallyl substituted indolines are obtained in moderate to good yields (36-77% yield) with excellent enantioselectivity (up to 99% ee). The reaction features broad functional group tolerance, scaled-up synthesis, and late-stage diversification.
Collapse
Affiliation(s)
- Yuan-Yuan Hu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Xiao-Qiu Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Wei-Chao Deng
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Zhang KY, Long F, Peng CC, Liu JH, Wu LJ. Pd-Catalyzed Multicomponent Cross-Coupling of Allyl Esters with Alkyl Bromides and Potassium Metabisulfite: Access to Allylic Sulfones. Org Lett 2023; 25:5817-5821. [PMID: 37498112 DOI: 10.1021/acs.orglett.3c02066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A Pd-catalyzed multicomponent cross-coupling of allyl esters with alkyl bromides to synthesize allylic sulfones by using K2S2O5 as a connector is first reported. The reaction displays a broad range of substrate generality along with excellent functional group compatibility and produces the products with high regioselectivity (only E). Furthermore, the biologically active molecules with a late-stage modification, including aspirin, menthol, borneol, and estrone, are also highly compatible with the multicomponent cross-coupling reaction. Mechanistic studies indicate that the process of SO2 insertion into the C-Pd bond was involved in this transformation.
Collapse
Affiliation(s)
- Kai-Yi Zhang
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fang Long
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
- Department of Hunan Cuisine, ChangSha Commerce & Tourism College, Changsha 410116, China
| | - Chuan-Chong Peng
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jin-Hui Liu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
10
|
Xu Y, Wang S, Liu Z, Guo M, Lei A. Photo/Ni dual-catalyzed radical defluorinative sulfonylation to synthesize gem-difluoro allylsulfones. Chem Commun (Camb) 2023; 59:3707-3710. [PMID: 36912357 DOI: 10.1039/d2cc05934g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Radical defluorinative functionalization of α-trifluoromethyl styrenes represents an effective way toward gem-difluoroalkenes. There are general interests in developing novel synthetic protocols for defluorinative functionalization with various types of radicals. However, reports on the preparation of gem-difluoro allylsulfones via an S-centered radical pathway are limited. Herein, we developed a photo/nickel dual-catalyzed defluorinative sulfonylation that rapidly and reliably synthesizes gem-difluoro allylsulfones. The merit of this protocol is exhibited by its mild conditions and wide scope, thus providing a novel strategy for the sulfonyl radical participating in radical defluorinative coupling.
Collapse
Affiliation(s)
- Yiran Xu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Zhao Liu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Mian Guo
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
11
|
Li Y, Wen L, Guo W. A guide to organic electroreduction using sacrificial anodes. Chem Soc Rev 2023; 52:1168-1188. [PMID: 36727623 DOI: 10.1039/d3cs00009e] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Organic electrosynthesis is a green strategy for the synthesis of valuable molecules. Electrochemical reactions using sacrificial metal anodes enable new reactivity to be uncovered that could not be achieved with traditional non-electrochemical methods. Compared with reactions using metal powder as the reducing reagent, the mild electroreduction protocols usually exhibit diverse reactivity and excellent selectivity. The inexpensive metal anodes possess low oxidation potential, which could prevent undesired overoxidation of substrates, active intermediates and products. The in situ generated metal ions from sacrificial anodes could not only serve as Lewis acids to activate the reactants but also as a promoter or mediator. This tutorial review highlights the recent achievements in this rapidly growing area within the past five years. The sacrificial anode-enabled electroreductions are discussed according to the reaction type.
Collapse
Affiliation(s)
- Yufeng Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Lirong Wen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Weisi Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
12
|
Villo P, Shatskiy A, Kärkäs MD, Lundberg H. Electrosynthetic C-O Bond Activation in Alcohols and Alcohol Derivatives. Angew Chem Int Ed Engl 2023; 62:e202211952. [PMID: 36278406 PMCID: PMC10107720 DOI: 10.1002/anie.202211952] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 11/07/2022]
Abstract
Alcohols and their derivatives are ubiquitous and versatile motifs in organic synthesis. Deoxygenative transformations of these compounds are often challenging due to the thermodynamic penalty associated with the cleavage of the C-O bond. However, electrochemically driven redox events have been shown to facilitate the C-O bond cleavage in alcohols and their derivatives either through direct electron transfer or through the use of electron transfer mediators and electroactive catalysts. Herein, a comprehensive overview of preparative electrochemically mediated protocols for C-O bond activation and functionalization is detailed, including direct and indirect electrosynthetic methods, as well as photoelectrochemical strategies.
Collapse
Affiliation(s)
- Piret Villo
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| | - Andrey Shatskiy
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| | - Markus D. Kärkäs
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| | - Helena Lundberg
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| |
Collapse
|
13
|
Zhang G, Wang L, Cui L, Gao P, Chen F. Deaminative defluoroalkylation of α-trifluoromethylalkenes enabled by photoredox catalysis. Org Biomol Chem 2023; 21:294-299. [PMID: 36510767 DOI: 10.1039/d2ob02114e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we disclose a new photoredox-catalysed strategy to access gem-difluoroallylarenes from α-trifluoromethylalkenes with sterically hindered primary amines via C-N and C-F bond activation. This deaminative and defluorinative allylation is generally compatible with diverse functional groups and sterically hindered α-3° and 2° primary amines.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Liping Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| |
Collapse
|
14
|
Gavin JT, Belli RG, Roberts CC. Radical-Polar Crossover Catalysis with a d 0 Metal Enabled by a Redox-Active Ligand. J Am Chem Soc 2022; 144:21431-21436. [DOI: 10.1021/jacs.2c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Joshua T. Gavin
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Roman G. Belli
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Courtney C. Roberts
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Abstract
Fluorinated organic compounds are common among pharmaceuticals, agrochemicals and materials. The significant strength of the C-F bond results in chemical inertness that, depending on the context, is beneficial, problematic or simply a formidable synthetic challenge. Electrosynthesis is a rapidly expanding methodology that can enable new reactivity and selectivity for cleavage and formation of chemical bonds. Here, a comprehensive overview of synthetically relevant electrochemically driven protocols for C-F bond activation and functionalization is presented, including photoelectrochemical strategies.
Collapse
Affiliation(s)
- Johannes L Röckl
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | | | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
16
|
Guan YQ, Wang TZ, Qiao JF, Chen Z, Bai Z, Liang YF. Iron-catalysed reductive coupling for the synthesis of polyfluorinated compounds. Chem Commun (Camb) 2022; 58:13915-13918. [DOI: 10.1039/d2cc06022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Iron-catalysed reductive cross-coupling of difluorobromo acetic acid derivatives with trifluoromethyl olefins to afford polyfluorinated molecules, containing a difluorenyl and difluoroalkyl group, with a broad substrate scope.
Collapse
Affiliation(s)
- Yu-Qiu Guan
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jia-Fan Qiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhushuang Bai
- School of Pharmacy and Pharmaceutical Science & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|