1
|
Dhakar RL, Goud SB, Samanta S. Base-Promoted and Copper(I)-Catalyzed Tandem Cyclization-C(sp 2)-N Coupling of Vinyl Malononitriles with Ortho-Nitrochalcones: Access to Acridones and their Fused Derivatives. J Org Chem 2025; 90:3698-3718. [PMID: 40017332 DOI: 10.1021/acs.joc.4c03125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
An efficient Cs2CO3-promoted and copper(I)-catalyzed double cyclization of ortho-nitrochalcones with vinyl malononitriles for the de novo access to a variety of tri- and tetra-substituted acridones and their fused derivatives with a value-added CN group has been developed for the first time. This one-pot operation proceeds through a Michael-cyclization-aromatization, followed by regioselective ipso-amination via nucleophilic aromatic substitution (SNAr) reaction, resulting in two C═C bonds and a C-N bond for acridone ring synthesis. This economic strategy based on 100% carbon atoms ensures the successive formation of two rings in a one-pot operation, good to high yields, a wide range of substrates, and good tolerance of functionalities. In addition, acridones were converted into several value-added acridones and acridines, highlighting the synthetic versatility and usefulness of the prepared acridone derivatives.
Collapse
Affiliation(s)
- Raju L Dhakar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - S Banuprakash Goud
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
2
|
Zeng G, Li J, Wen Y, Wan J, Zhang Z, Huang C. High Selectivity Hydroxylation and Other Functionalization of Quinoline-Directed Reactions under Cu(II)-Catalysis. Org Lett 2025; 27:2069-2074. [PMID: 40012253 DOI: 10.1021/acs.orglett.5c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Despite progress in ortho C-H functionalization of aromatic rings directed by guiding groups, achieving highly selective hydroxylation in simple systems without the need for additional ligand assistance remains a significant challenge. Here, we report the direct hydroxylation of the ortho C-H bond of aromatic rings directed by quinoline under Cu(II) catalysis. Based on experimental analysis and DFT calculations, the main reason for the high selectivity of the quinoline-directed hydroxylation reaction is that the match between the new substrate and the method leads to an increased range of oxygen source incorporation. Isotope experiments and DFT calculations provide support for the origin of the oxygen source in the hydroxylation process and the rationale behind its observed distribution. Additionally, the introduction of various nucleophiles enabled the cyanation, nitration, and halogenation of ortho C-H bonds in the aryl group.
Collapse
Affiliation(s)
- Guiyun Zeng
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Jingpeng Li
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yuanmin Wen
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Juan Wan
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Zhou Zhang
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Chao Huang
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| |
Collapse
|
3
|
Wen Y, Liu T, Huang S, Zeng G, Zhang Z, Ye Y, Huang C. Base-Catalyzed Chalcogenative Annulation of N-Maleimido O-Aminobenzyl Alcohol with Elemental Sulfur/Selenium: Access to 1,4-Sulfa-/Selena-zepanes. Org Lett 2025; 27:1935-1940. [PMID: 39960807 DOI: 10.1021/acs.orglett.5c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
We reported an unprecedented chalcogen element (Se, S) insertion reaction with functionalized aminomaleimide to assemble medium-sized nitrogen-containing organic selenium/sulfur catalyzed by bases. During these [5/6 + 1] tandem annulations, a variety of low-valent inorganic chalcogenides exhibited excellent compatibility, providing a wide scope of structurally diverse 1,4-selenazepanes (17 examples, 60-71% yields), 1,4-benzothiazepines (20 examples, 74-86% yields), and 1,4-thiazines (6 examples, 31-68% yields). The characteristics of this transformation are high atomic economy, formation of two C-Se or C-S bonds in one step, and avoiding the use of unstable and toxic selenium/sulfur reagents under mild conditions.
Collapse
Affiliation(s)
- Yuanmin Wen
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China
| | - Teng Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, P.R. China
| | - Shuntao Huang
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China
| | - Guiyun Zeng
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China
| | - Zhou Zhang
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China
| | - Yanqing Ye
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China
| | - Chao Huang
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P.R. China
| |
Collapse
|
4
|
Zeng G, Wan J, Yuan Y, Wen Y, Liu L, Li J, Li J, Huang C. Base-Promoted [4 + 1 + 1] Multicomponent Tandem Cycloaddition of Ortho-Substituted Nitroarenes, Aldehydes, and Ammonium Salts To Access 2,4-Substituted Quinazoline Frameworks. J Org Chem 2025; 90:1982-1995. [PMID: 39846728 DOI: 10.1021/acs.joc.4c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
We report a base-promoted, metal-free multicomponent tandem reaction, involving a [4 + 1 + 1] cycloaddition process between ortho-substituted nitroarenes, aldehydes, and ammonium salts. Modifying the substituents on the nitroaromatic compounds effectively provides structurally diverse 2-substituted and 4-alkenylquinazolines with good to excellent yields (77%-90% and quinazoline 51 examples) and high tolerance for various inorganic ammonium salts (13 examples, such as NH3·H2O, NH4Cl, and NH4HF2). A new method for constructing 2,4-substituted quinazoline compounds with high selectivity from simple nitrogen source compounds was developed, and the reaction can be scaled up to a gram scale. Additionally, this method also facilitates the preparation of organic molecules with photophysical properties, offering new insights into the further transformation of quinazolines.
Collapse
Affiliation(s)
- Guiyun Zeng
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Juan Wan
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Yilong Yuan
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Yuanmin Wen
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Linyou Liu
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Junjie Li
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Jingpeng Li
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Chao Huang
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| |
Collapse
|
5
|
Chang MY, Lin CY. One-pot synthesis of symmetrical bis-sulfonyl 2,6-diarylpyridines via BiCl 3-catalyzed and K 2S 2O 8-mediated domino annulation of β-ketosulfones and N, N-dimethylacetamide. Org Biomol Chem 2025; 23:844-853. [PMID: 39625690 DOI: 10.1039/d4ob01681e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In this study, BiCl3-promoted and K2S2O8-mediated synthesis of diverse bis-sulfonyl 2,6-diarypyridines was developed via one-pot stepwise (2C + 2C + 1C + 1N) annulation of two molecules of β-ketosulfone and N,N-dimethylacetamide (DMAC). In the entire process, DMAC acts as the synthon of one carbon and one nitrogen in the construction of the pyridine skeleton via cascade formation of single (C-C/C-N) and double (CC/CN) bonds under refluxing DMAC conditions.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Chun-Yi Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
6
|
Zhang Z, Zhao S, Wen Y, Zeng G, Yuan M, Huang C. A substrate-induced dual utilization cascade reaction of N-alkyl anilines: highly site-selective sustainable synthesis of chromeno[4,3- b]quinolin-6-ones. Org Biomol Chem 2025; 23:884-891. [PMID: 39635724 DOI: 10.1039/d4ob01764a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We describe a novel substrate-induced cascade reaction of N-alkyl anilines via C(sp3)-N bond cleavage and reorganization into chromeno[4,3-b]quinolin-6-ones. N-alkyl anilines are not only used as a carbon source, but also the waste group was trapped by 4-hydroxy coumarin. The calculation of green metrics shows that our protocol is more efficient and green with lower emission than before. Additionally, a gram-scale reaction and one-pot synthesis of bioactive molecules further demonstrate the potential application of our protocol in the pharmaceutical industry.
Collapse
Affiliation(s)
- Zhou Zhang
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China.
| | - Sihan Zhao
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China.
| | - Yuanmin Wen
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China.
| | - Guiyun Zeng
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China.
| | - Minglong Yuan
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China.
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China
| | - Chao Huang
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China.
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, PR China
| |
Collapse
|
7
|
Zhang WM, Zhao QS, Chen SY, Zhang CH, Yan SJ. Cascade Annulation for Synthesizing Chromenopyrrolones from o-Hydroxyphenyl Enaminones and 2-Halo- N-alkyloxyacetamides. J Org Chem 2024; 89:18322-18336. [PMID: 39600256 DOI: 10.1021/acs.joc.4c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A cascade cyclization reaction comprising two halogenation reactions and a Michael addition was developed for the synthesis of chromeno[2,3-c]pyrrole-3-ones 4. Additionally, another cascade cyclization reaction, which involves a halogenation reaction followed by two intramolecular Michael additions, was established for the synthesis of chromeno[2,3-b]pyrrole-2-ones 5. Both types of compounds were synthesized from o-hydroxyphenyl enaminones and 2-halo-N-alkyloxyacetamides through a process that facilitated the intramolecular formation of C-C, C-O, and C-N bonds to effectively establish two fused rings in a single operation. This novel protocol is efficient, uses readily accessible starting materials, and operates under mild conditions, demonstrating tolerance for various functional groups while achieving good yields.
Collapse
Affiliation(s)
- Wei-Min Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Qing-Sheng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Si-Yi Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Cong-Hai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
8
|
Ly TM, Huynh TN, Phan NHY, Dinh PT, Nguyen TT. Copper-Catalyzed Cascade Cyclization of 2-Nitrochalcones with NH-Heterocycles. J Org Chem 2024; 89:17346-17354. [PMID: 39561084 DOI: 10.1021/acs.joc.4c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We developed a method for allowing cascade cyclization of 2-nitrochalcones with pyrazoles, imidazole, and indazole in the presence of CuI catalyst, DBU base, and THF solvent. The conditions were tolerant of an array of useful functionalities including ester, nitro, cyano, halogen groups. A mechanistic consideration was also provided, as H2O2 was presumably a byproduct. Our method appears to be a rare example to directly prepare C3-heterocyclic unprotected indoles.
Collapse
Affiliation(s)
- Thang M Ly
- VNU-HCM Key Laboratory for Structures of Advanced Materials, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City 84, Vietnam
| | - Tan N Huynh
- VNU-HCM Key Laboratory for Structures of Advanced Materials, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City 84, Vietnam
| | - Nhi H Y Phan
- VNU-HCM Key Laboratory for Structures of Advanced Materials, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City 84, Vietnam
| | - Phuong T Dinh
- VNU-HCM Key Laboratory for Structures of Advanced Materials, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City 84, Vietnam
| | - Tung T Nguyen
- VNU-HCM Key Laboratory for Structures of Advanced Materials, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City 84, Vietnam
| |
Collapse
|
9
|
Bairwa M, Verma RK, Bharadwaj KC. Domino Sequence of Ketimization and Electrophilic Amination for an Inverse Aza Intramolecular Morita-Baylis-Hillman Adduct. J Org Chem 2024; 89:14811-14817. [PMID: 39361826 DOI: 10.1021/acs.joc.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Morita-Baylis-Hillman (MBH) reaction, typically catalyzed by a Lewis base, is a popular and useful method for C-C bond formation. Unfortunately, it is limited by a slow reaction rate and has sensitivity toward steric and electronic parameters. Despite tremendous efforts, the versatility of the reaction keeps the quest open for new mechanistic and catalytic pathways. Here, we have reported a Bro̷nsted acid-catalyzed, electrophilic amination (Umpolung of imine) as a method for an inverse Aza Intramolecular MBH adduct in the form of 2-acylindole. Umpolung of imine with nitrogen acting as an electrophilic center has been achieved. Interestingly, the reaction was also shown to occur under catalyst-free conditions also. The expected products of ketimine formation, 6π electrocyclization, or quinoline formation were least/not observed. A large number of examples have demonstrated the reaction strength. β-aryl-substituted acrylate and acrylamide (cinnamates and cinnamides), which are extremely sluggish in conventional MBH chemistry, are the highlights of the developed methodology. The annulated product exhibited keto-enol tautomerism, which was proven by 1H NMR integrals. As an application, another tandem reaction in the form of Michael addition on a highly complex amine was carried out to provide spiro-annulated indole.
Collapse
Affiliation(s)
- Mansingh Bairwa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rakesh Kumar Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
10
|
Tan B, Hu K, Zhang C, Zhou X, Deng GJ, Chen S. Base-Promoted Tandem Cyclization of 2-(Indol-3-yl)naphthoquinones with Benzamidines toward Polysubstituted Pyrimido[4,5- b]indoles. Org Lett 2024; 26:8034-8039. [PMID: 39297762 DOI: 10.1021/acs.orglett.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A novel and unique approach for the construction of polysubstituted pyrimido[4,5-b]indoles from 2-(indol-3-yl)naphthoquinones and benzamidines is described. Our strategy, promoted by an inorganic base, involves the ring opening and recyclization of naphthoquinone and produces three nitrogen heterocyclic rings via multiple C-N bond formations in one pot under transition-metal-free conditions.
Collapse
Affiliation(s)
- Bin Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Kai Hu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chao Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Xinlin Zhou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
11
|
Yang Q, Huang S, Yin L, Wang Z, Chen X, Huang C. NBS-Promoted Synthesis of Thiocyanated Aminomaleimides and Site-Selective Intramolecular Cyclization Access to 1,4-Benzothiazepines via S-CN Bond Cleavage. J Org Chem 2024; 89:5266-5276. [PMID: 38592168 DOI: 10.1021/acs.joc.3c02607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A transition metal-free concise and efficient protocol for the synthesis of thiocyanated aminomaleimides and benzo[e][1,4]thiazepine derivatives has been developed. The method involves an initial α-C-H thiocyanation of aminomaleimides with KSCN and TEMPO-mediated tandem S-CN bond cleavage/intramolecular cyclization substitution processes, which enables the formation of seven-membered S/N-heterocycles. This synthetic strategy provides a reliable method for the synthesis of biologically interesting benzo[e][1,4]thiazepine derivatives by using KSCN as sulfur sources as well as expands the application of enaminones thiocyanation reactions in heterocycles synthesis.
Collapse
Affiliation(s)
- Qi Yang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P.R. China
- School of Chemistry and Resource Engineering, Honghe University, Mengzi 661199, P.R. China
| | - Shuntao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P.R. China
| | - Lu Yin
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P.R. China
| | - Zhuoyu Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P.R. China
| | - Xuebing Chen
- School of Chemistry and Resource Engineering, Honghe University, Mengzi 661199, P.R. China
| | - Chao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P.R. China
| |
Collapse
|
12
|
Wan J, Zeng G, Huang S, Yuan Y, Xu Z, Wen Y, Huang C. Base-Catalyzed Cascade Cyclization of 2-Nitrochalcones and Isocyanides to Access Pyrano[3,4- b]indol-1(9 H)-one Frameworks. J Org Chem 2024; 89:4549-4559. [PMID: 38517745 DOI: 10.1021/acs.joc.3c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
An unexpected cascade reaction of 2-nitrochalcones with isocyanoacetates has been reported for the efficient synthesis of indole carboxylic esters and pyranoindoles. The conversion was achieved by KOH-catalyzed cyclization and elimination of the nitro group with final decarbonylation-aromatization. The method was used to synthesize a series of potentially biologically active indole derivatives (49 examples) in 67-85% yields under transition-metal-free catalytic conditions.
Collapse
Affiliation(s)
- Juan Wan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Guiyun Zeng
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Shuntao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yilong Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Zhuoting Xu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yuanmin Wen
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Chao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| |
Collapse
|
13
|
Zhang C, Li G, Shang Z, Li R, Xu X. DFT Study on Mechanism of Ni-Al Bimetallic-Catalyzed C-H Cyclization to Construct Tricyclic Imidazoles: Roles of NHC Ligand and AlMe 3. J Org Chem 2024; 89:1505-1514. [PMID: 38217504 DOI: 10.1021/acs.joc.3c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
The mechanism of the Ni-Al bimetallic-catalyzed C-H cyclization to construct tricyclic imidazoles is investigated using density functional theory calculations. The calculation result shows that the reaction mechanism involves sequential steps of substrate coordination, ligand-to-ligand hydrogen transfer (LLHT), and C-C reductive elimination to produce the final product tricyclic imidazole. The LLHT step is calculated to be the rate-determining step. The oxidative addition of the benzimidazole C-H bond to the Ni center and the insertion of the alkene into the Ni-H bond occur concertedly in the LLHT step. The effects of N-heterocyclic carbene (NHC) ligands and AlMe3 on the reactivity and regioselectivity were also analyzed. These calculation results shed light on some ambiguous suggestions from experiments.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Guorong Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhenfeng Shang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ruifang Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
14
|
Zhu YL, Dong YF, Wang SR, Li YG, Wu X, Ye LW. Nucleophile-Controlled Trapping of Gold Carbene by Nitriles and Water: Synthesis of 5 H-Pyrimido[5,4- b]indoles and 2-Benzylidene-3-indolinones. Org Lett 2024; 26:631-635. [PMID: 38214532 DOI: 10.1021/acs.orglett.3c03856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A gold-catalyzed, nucleophile-controlled cascade reaction of N-(2-azidophenyl-ynyl)methanesulfonamides with nitriles and water is described that provides structurally diverse 5H-pyrimido[5,4-b]indoles and 2-benzylidene-3-indolinones in good to excellent yields. Mechanistic studies indicate that the β-sulfonamido-α-imino gold carbene is the key intermediate which is generated through the gold-catalyzed cyclization of N-(2-azidophenyl-ynyl)methanesulfonamides and undergoes formal [4 + 2] cascade annulation with nitriles and intramolecular SN2' type reaction with water, respectively.
Collapse
Affiliation(s)
- Yun-Long Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Yi-Fan Dong
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Si-Ru Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - You-Gui Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Xiang Wu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Zhang X, Liu C, Wei W, Zhang Z, Liang T. Iodine-dependent oxidative regioselective aminochalcogenation of indolines. Chem Commun (Camb) 2024; 60:1152-1155. [PMID: 38189976 DOI: 10.1039/d3cc05999e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A directing-group-free strategy for oxidative regioselective aminochalcogenation of indolines with amines and dichalconides is presented. This strategy combines tandem coupling sequences and oxidative dehydrogenation methods in a multi-component reaction, enabling the fast construction of a series of C2,3- or C2,5-aminochalcogenated indole derivatives. Moreover, the application of this synthetic approach is demonstrated through the late-stage modification of pharmaceuticals and the derivatization of the products, highlighting its potential and significance.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Chenrui Liu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Wanxing Wei
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| |
Collapse
|
16
|
Li J, Wang Z, Zeng G, Zhang Z, Wan J, Fu M, Huang C. Cu(II)-Catalyzed Cascade of N-Phenyl- o-phenylenediamine with Benzaldehyde: One-Step Direct Construction of 2-(1-Phenyl-1 H-benzo[ d]imidazol-2-yl)phenols. J Org Chem 2023. [PMID: 37262308 DOI: 10.1021/acs.joc.3c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A practical protocol for the construction of hydroxylated 2-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenols (PBIs) from N-phenyl-o-phenylenediamine with benzaldehydes was developed. The cascade reaction was enabled by heating a mixture of the two substrates in the presence of air as an oxidant and anhydrous Cu(OAc)2 as a catalyst in dimethyl sulfoxide, and a diverse series of PBIs were synthesized in moderate to good yields (69-81%). Furthermore, the synthesis of the PBIs was enabled via a one-pot cascade reaction that proceeded through subsequent dehydration condensation, intramolecular cyclization, and aromatic C-H hydroxylation. This protocol can be used for the synthesis of hydroxylated PBI via a one-pot annulation C-H hydroxylation reaction rather than through a series of multistep reactions, which provides the possibility of further modification.
Collapse
Affiliation(s)
- Jingpeng Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Zhuoyu Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Guiyun Zeng
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Zhou Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Juan Wan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Meitian Fu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Chao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| |
Collapse
|
17
|
Zou D, Wang W, Hu Y, Jia T. Nitroarenes and nitroalkenes as potential amino sources for the synthesis of N-heterocycles. Org Biomol Chem 2023; 21:2254-2271. [PMID: 36825326 DOI: 10.1039/d3ob00064h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Nitro-compounds are one of the cheapest and most readily available materials in the chemical industry and are commonly utilized as versatile building blocks. Previously, the synthesis of N-heterocycles was largely based on anilines. The utilization of nitroarenes and nitroalkenes for the synthesis of N-heterocyclic compounds can save at least one step, however, as compared to anilines. Thus, considerable attention has been paid to nitroarenes and nitroalkenes as new potential amino sources. Significant progress has been made in the reductive cyclization of nitroarenes or nitroalkenes to access various N-heterocycles in recent years. Herein, we comprehensively summarize the recent progress in the construction of N-heterocycles using nitroarenes and nitroalkenes as potential amino sources. The compatibility of the reaction substrate, its mechanism, applications, advantages, and limitations in this field are also discussed in detail.
Collapse
Affiliation(s)
- Dong Zou
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang, University, Hangzhou, Zhejiang, 310016, China.
| | - Wei Wang
- Department of Pharmacy, Qiantang Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310018, China
| | - Yaqin Hu
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang, University, Hangzhou, Zhejiang, 310016, China.
| | - Tingting Jia
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
18
|
Hsueh NC, Wang YH, Chang MY. Sequential condensation and double desulfonylative cyclopropanation of 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins: access to biscyclopropane-fused tetralins. Org Biomol Chem 2023; 21:1206-1221. [PMID: 36632710 DOI: 10.1039/d2ob02188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Efficient tBuOK-mediated sequential condensation and double desulfonylative cyclopropanation of readily accessible 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins is described. This high-yielding, single-step strategy provides a variety of polysubstituted biscyclopropane-fused tetralins with six contiguous stereogenic centers via the construction of five carbon-carbon single bonds. A plausible mechanism is proposed and discussed. In the overall reaction process, water and sulfinic acid salts were generated as the byproducts.
Collapse
Affiliation(s)
- Nai-Chen Hsueh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Han Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
19
|
Khanal HD, Perumal M, Lee YR. Annulation strategies for diverse heterocycles via the reductive transformation of 2-nitrostyrenes. Org Biomol Chem 2022; 20:7675-7693. [PMID: 35971908 DOI: 10.1039/d2ob01149b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of the stable nitro group is a fundamental and widely used transformation for the construction of complex and functionalized heterocyclic architectures. The unfolding of the reactivity of the nitro group in the 2-nitrostyrene moiety not only triggers the formation of carbon-nitrogen bonds, but also offers the opportunity for annulation and heteroannulation, thereby providing a cascade process for the synthesis of highly conjugated natural and unnatural molecules. In this review, we comprehensively discuss the use of 2-nitrostyrene motifs in the synthesis of various N-heterocycles. We offer readers an overview of the synthetic achievements achieved to date, highlighting their important features, reactivities, and mechanisms.
Collapse
Affiliation(s)
- Hari Datta Khanal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Muthuraja Perumal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|