1
|
Feng Q, Zhou Y, Xu H, Liu J, Wan Z, Wang Y, Yang P, Ye S, Zhang Y, Cao X, Cao D, Huang H. BN-embedded aromatic hydrocarbons: synthesis, functionalization and applications. Chem Soc Rev 2025. [PMID: 40392597 DOI: 10.1039/d5cs00147a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Substituting CC double bonds with B-N bonds in polycyclic aromatic hydrocarbons (PAHs) has emerged as a promising approach to advance and diversify organic functional materials. This structural modification not only imparts unique electronic and optical properties, but also enhances chemical stability, thereby opening new avenues for material design and applications. However, the widespread adoption of BN-fused aromatic hydrocarbons in practical applications is still in its nascent phase. This constraint stems primarily from the challenges in precisely tailoring molecular structures to optimize photophysical and electronic properties, thereby influencing their efficacy in targeted applications. Consequently, a comprehensive evaluation of historical, current, and prospective developments in BN-fused aromatic hydrocarbons is deemed essential. This review offers an in-depth overview of recent advancements in BN-fused aromatic hydrocarbons, focusing on synthetic strategies, fundamental properties, and emerging applications. Additionally, we elucidate the pivotal role of computational chemistry in directing the design, discovery, and optimization of these materials. Our objective is to foster interdisciplinary collaboration and stimulate innovative approaches to fully harness the potential of azaborinine chemistry across various fields, including organic optoelectronics, biomedicine, and related disciplines.
Collapse
Affiliation(s)
- Qiang Feng
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Ying Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Han Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Jianhua Liu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Zicheng Wan
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Yawei Wang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Pinghua Yang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Shan Ye
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Yiding Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Xiaohua Cao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| |
Collapse
|
2
|
Wang G, Guo Q, Xin Y, Qi Z, Cao S, Tian D, Zhu B. Synthesis, Structure, and Properties of Two Planar BN-Benzofluorenes. Org Lett 2025; 27:3844-3850. [PMID: 40186572 DOI: 10.1021/acs.orglett.5c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Two planar BN doped benzofluorenes (BN-BkF and BN-BjF) were synthesized separately through palladium-catalyzed intramolecular C-C or C-N coupling reactions. The structures of both BN-BkF and BN-BjF are unambiguously confirmed by X-ray crystallographic analysis. Moreover, the BN unit doping leads to a much lower HOMO level and higher LUMO level as compared to their carbon analogues BkF and BjF. In comparison to BkF and BjF, both BN-BkF and BN-BjF exhibit blue shifts in their ultraviolet-visible (UV-vis) absorption and fluorescence emission spectra. Furthermore, halogenation of BN-BkF and BN-BjF afforded monohalogenated BN-benzofluorenes in good yields. These monohalogenated BN-benzofluorenes can serve as convenient intermediates for palladium-catalyzed coupling reactions to yield a series of functionalized BN-benzofluorene derivatives. The UV-vis absorption and emission spectroscopies in dichloromethane of these BN-benzofluorene derivatives were studied, and the photophysics of these compounds exhibited a high degree of substituent dependency.
Collapse
Affiliation(s)
- Guan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Qianqian Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yue Xin
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Zhang Qi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Shiyu Cao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Dawei Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
3
|
Li C, Sun Y, Xue N, Guo Y, Jiang R, Wang Y, Liu Y, Jiang L, Liu X, Wang Z, Jiang W. BN-Acene Ladder with Enhanced Charge Transport for Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2025; 64:e202423002. [PMID: 39726333 DOI: 10.1002/anie.202423002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 12/28/2024]
Abstract
The in-depth research on the charge transport properties of BN-embedded polycyclic aromatic hydrocarbons (BN-PAHs) still lags far behind studies of their emitting properties. Herein, we report the successfully synthesis of novel ladder-type BN-PAHs (BCNL1 and BCNL2) featuring a highly ordered BC3N2 acene unit, achieved via a nitrogen-directed tandem C-H borylation. Single-crystal X-ray diffraction analysis unambiguously revealed their unique and compact herringbone packing structures. Micro-sized single-crystalline organic field-effect transistors (OFETs) demonstrated that an enhanced charge transport capability, with BCNL2 achieving a hole mobility of up to 0.62 cm2 V-1 s-1-three orders of magnitude higher than that of BCNL1 (μh max=6 × 10-4 cm2 V-1 s-1), ranking among the highest values for BN-PAHs-based OFETs. Detailed calculations attribute this significant enhancement in the hole mobility to the marked reduction in reorganization energy (λ) of BCNL2, resulting from the five-membered pyrrole ring annulation and molecular skeleton elongation. This work provides insight into molecular design principles for potential BN-PAHs in optoelectronic applications.
Collapse
Affiliation(s)
- Chenglong Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yanan Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Yongkang Guo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Ruijun Jiang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yuanhui Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
4
|
Spruner von Mertz F, Polkaehn J, Villinger A, Ehlers P, Langer P. π-Expanded and N-Doped Fluoranthenes. J Org Chem 2025; 90:1024-1035. [PMID: 39763144 DOI: 10.1021/acs.joc.4c02204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Novel π-expanded and N-doped fluoranthenes were synthesized and thoroughly investigated. These eight unsubstituted compounds are obtained in a multistep synthesis with CH activation as the last key reaction step. The structures vary in their position of π-expansion on the fluoranthene scaffold and the location of the pyridinic nitrogen atom. This facilitates an in-depth investigation of the impact of such alterations in the fluoranthene structure on their overall properties. Accordingly, optical and electrochemical properties of these polyaromatic heterocycles were investigated, and DFT/TD-DFT and NICS calculations were performed. This paper entails a thorough study on b- and l,j-expanded and N-doped fluoranthenes.
Collapse
Affiliation(s)
| | - Jonas Polkaehn
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Alexander Villinger
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Ehlers
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Langer
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany
| |
Collapse
|
5
|
Li R, Lin X, Ding C, Xu B, Tan Q. Heterocoronenes Containing Pyridine and 1,2-Azaborine Units. Org Lett 2024; 26:11028-11033. [PMID: 39652784 DOI: 10.1021/acs.orglett.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Several coronenes containing pyridine and azaborine units have been readily prepared and structurally confirmed by X-ray crystallographic analysis. The codoping results in interesting findings and properties such as the first observation of BN-H---NPy hydrogen bonds in crystals of BN-PAHs, short π-π stacking distances, lowered HOMO-LUMO levels, narrow band gap, and unique dual response to fluoride ion and proton in solution.
Collapse
Affiliation(s)
- Ruili Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaohong Lin
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Changhua Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Zhang Y, Li W, Jiang R, Zhang L, Li Y, Xu X, Liu X. Synthetic Doping of Acenaphthylene through BN/CC Isosterism and a Direct Comparison with BN-Acenaphthene. J Org Chem 2022; 87:12986-12996. [PMID: 36149831 DOI: 10.1021/acs.joc.2c01534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Boron/nitrogen-doped acenaphthylenes, a new class of BN-doped cyclopenta-fused polycyclic aromatic hydrocarbons, were synthesized via indole-directed C-H borylation. The reference molecule BN-acenaphthene was also synthesized in a similar manner. Both BN-acenaphthylene and BN-acenaphthene were unequivocally characterized by single-crystal X-ray analysis. The aromaticities of each ring in BN-acenaphthylenes were quantified by experimental and theoretical methods. Moreover, doping the BN unit into acenaphthylene can increase the LUMO level and decrease the HOMO level, resulting in wider HOMO-LUMO energy gaps. Furthermore, regioselective bromination of BN-acenaphthylene (B-Mes) afforded monobrominated BN-acenaphthylene in good yield. Subsequently, cross-coupling of brominated BN-acenaphthylene gave a series of BN-acenaphthylene derivatives. In addition, the photophysical properties of these BN-acenaphthylene derivatives can be fine-tuned by the substituents on the BN-acenaphthylene scaffold.
Collapse
Affiliation(s)
- Yanli Zhang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Wenlong Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Ruijun Jiang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yuanhao Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiaoyang Xu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xuguang Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|