1
|
Zhao BW, Yang L, Long CY, Li HL, He YT, Wang XQ. Ni-Catalyzed Protecting Group Free Diphenic Acid Analog Synthesis. Org Lett 2023; 25:4700-4704. [PMID: 37314939 DOI: 10.1021/acs.orglett.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Severe side effects and drug resistance are major drawbacks of Pt-based chemotherapy in clinical practice, leading to the search for new Pt-based drugs through the tuning of coordination ligands. Therefore, seeking appropriate ligands has attracted significant interest in this area. In this study, we report a Ni-catalyzed coupling strategy for the divergent synthesis of diphenic acid derivatives and the application of these newly prepared acids in Pt(II) agent synthesis.
Collapse
Affiliation(s)
- Bo-Wei Zhao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), the Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Liu Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Cheng-Yu Long
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Han-Lu Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), the Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yu-Ting He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), the Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xue-Qiang Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), the Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
2
|
Kostić K, Brborić J, Delogu G, Simić MR, Samardžić S, Maksimović Z, Dettori MA, Fabbri D, Kotur-Stevuljević J, Saso L. Antioxidant Activity of Natural Phenols and Derived Hydroxylated Biphenyls. Molecules 2023; 28:2646. [PMID: 36985617 PMCID: PMC10053952 DOI: 10.3390/molecules28062646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
A comparative in vitro study of the antioxidant potential of natural phenols (zingerone, curcumin, raspberry ketone, magnolol) and their synthesized derivatives was performed. The antioxidant efficiency was evaluated in blood serum obtained from healthy individuals, by means of spectrophotometry, before and after the addition of pro-oxidant tert-butyl hydroperoxide (TBH). Moreover, the antioxidant effect of an equimolar mixture of curcumin and zingerone was investigated. Interpretation of our results reveals that in the blood serum of healthy individuals curcumin (C1), raspberry ketone (RK1), magnolol (M1) and synthesized derivative of zingerone (Z2) demonstrate remarkable antioxidant effects (p < 0.05). However, in the state of TBH-induced excessive oxidative stress natural magnolol and synthesized derivatives C1, Z1 and RK1 show powerful antioxidant activity and thus can be further investigated to obtain information about their metabolic transformations and their potential influence at the cellular level. Results obtained from measurements in an equimolar mixture of zingerone and curcumin indicate synergism (p < 0.05) between the two compounds. This combination is especially successful due to the fast and efficient neutralization of added pro-oxidant TBH. The commercial availability of turmeric and ginger and their frequent combined use in diet suggest ideas for further broader utilization of the beneficial synergistic effect of their phenolic components.
Collapse
Affiliation(s)
- Kristina Kostić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (K.K.)
| | - Jasmina Brborić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Giovanna Delogu
- Sassari Unit, Institute of Biomolecular Chemistry of CNR, Traversa La Crucca 3, 07100 Sassari, Italy; (G.D.); (M.A.D.)
| | - Milena R. Simić
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Stevan Samardžić
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.S.); (Z.M.)
| | - Zoran Maksimović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.S.); (Z.M.)
| | - Maria Antonietta Dettori
- Sassari Unit, Institute of Biomolecular Chemistry of CNR, Traversa La Crucca 3, 07100 Sassari, Italy; (G.D.); (M.A.D.)
| | - Davide Fabbri
- Sassari Unit, Institute of Biomolecular Chemistry of CNR, Traversa La Crucca 3, 07100 Sassari, Italy; (G.D.); (M.A.D.)
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (K.K.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
3
|
Pal A, Thakur A. One-pot synthesis of dimerized arenes and heteroarenes under mild conditions using Co( i) as an active catalyst. Org Biomol Chem 2022; 20:8977-8987. [DOI: 10.1039/d2ob01738e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A cheap and robust methodology for dimerization of arenes and heteroarenes with new Co(i) as an active catalyst at room temperature in a shorter time.
Collapse
Affiliation(s)
- Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata- 700032, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata- 700032, India
| |
Collapse
|