1
|
Prindl MI, Westwood MT, Goodfellow AS, McKay AP, Cordes DB, Bühl M, Smith AD. Isoselenourea-Catalyzed Enantioselective Pyrazolo-Heterocycle Synthesis Enabled by Self-Correcting Amide and Ester Acylation. Angew Chem Int Ed Engl 2025; 64:e202425305. [PMID: 40032622 PMCID: PMC12051791 DOI: 10.1002/anie.202425305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
Pyrazole heterocycles are prevalent in a wide range of medicinal and agrochemical compounds, and as such, the development of methods for their enantioselective incorporation into molecular scaffolds is highly desirable. This manuscript describes the effective formation of fused pyrazolo-pyridones and -pyranones in high enantioselectivity (up to >99:1 er) via an isoselenourea (HyperSe) catalyzed enantioselective [3 + 3]-Michael addition-cyclization process using readily available pyrazolylsulfonamides or pyrazolones as pronucleophiles and α,β-unsaturated anhydrides as starting materials. Mechanistic analysis indicates an unusual self-correcting reaction pathway involving preferential [1,2]-addition of the pronucleophile to initially generate an intermediate amide or ester that can be intercepted by isoselenourea acylation, leading to productive formation of the fused heterocyclic products with high enantiocontrol. The scope and limitations of this process are developed across a range of examples, with insight into the factors leading to the observed enantioselectivity provided by density functional theory (DFT) analysis.
Collapse
Affiliation(s)
- Martha I. Prindl
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | | | | | - Aidan P. McKay
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - David B. Cordes
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Michael Bühl
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Andrew D. Smith
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
2
|
Nimmo AJ, Goodfellow AS, Guntley JT, McKay AP, Cordes DB, Bühl M, Smith AD. Isothiourea catalysed enantioselective generation of point and axially chiral iminothia- and iminoselenazinanones. Chem Sci 2025:d5sc02435h. [PMID: 40365056 PMCID: PMC12068085 DOI: 10.1039/d5sc02435h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Symmetrical and unsymmetrical thioureas, as well as unsymmetrical selenoureas, are used in an isothiourea-catalysed Michael addition-lactamisation protocol using α,β-unsaturated pentafluorophenyl esters to generate iminothia- and iminoselenazinanone heterocycles with high enantioselectivity (up to 99 : 1 er). The scope and limitations of this process have been widely investigated (40 examples in total) with unsymmetrical thio- and selenoureas containing ortho-substituted N-aryl substituents giving atropisomeric products, leading to an effective process for iminothia- and iminoselenazinanones heterocyclic products containing both point and axially chiral stereogenic elements with excellent stereocontrol (up to >95 : 5 dr and 98 : 2 er). Mechanistic investigation showed that (i) the catalytically liberated aryloxide could deprotonate an electron-deficient thiourea; (ii) in the absence of an isothiourea catalyst, this leads to formation of racemic product; (iii) a crossover experiment indicates the reversibility of the thia-Michael addition. Computational analysis has identified the factors leading to enantioselectivity within this process, with stereocontrol arising from the lactamisation step within the catalytic cycle.
Collapse
Affiliation(s)
- Alastair J Nimmo
- EaStCHEM, School of Chemistry, University of St Andrews Fife KY16 9ST UK
| | | | - Jacob T Guntley
- EaStCHEM, School of Chemistry, University of St Andrews Fife KY16 9ST UK
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews Fife KY16 9ST UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews Fife KY16 9ST UK
| |
Collapse
|
3
|
Platt FM, Wang Y, Cordes DB, McKay AP, Slawin AMZ, Panchal H, Smith AD. Isothiourea-catalysed enantioselective synthesis of phosphonate-functionalised β-lactones. Chem Sci 2025; 16:6828-6836. [PMID: 40110522 PMCID: PMC11915455 DOI: 10.1039/d5sc00322a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Despite growing interest in the reactivity and biological activity of phosphonate-containing molecules, the application of α-ketophosphonates in enantioselective formal [2 + 2] cycloadditions to generate β-lactones bearing a pendant phosphonate group remains unreported. In this manuscript, a highly diastereo- and enantioselective isothiourea-catalysed formal [2 + 2] cycloaddition of both alkyl- and aryl substituted C(1)-ammonium enolates and α-ketophosphonates is established. This strategy allows a mild, practical and scalable approach to highly enantioenriched C(3)-unsubstituted and C(3)-alkyl β-lactones bearing a phosphonate motif from their corresponding α-silyl acids, via a desilylative pathway (30 examples, up to 98%, >95 : 5 dr, >99 : 1 er). Alternatively, the use of (hetero)arylacetic acids allows the preparation of C(3)-(hetero)aryl β-lactones to be accessed in high yields and stereocontrol (19 examples, up to 98%, >95 : 5 dr, 99 : 1 er).
Collapse
Affiliation(s)
- Ffion M Platt
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Yihong Wang
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Heena Panchal
- Chemical Development, PT&D, AstraZeneca Etherow Building, Silk Road Business Park, Charter Way Macclesfield Cheshire SK10 2NA UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
4
|
Miyashita Y, Someya S, Kawasaki-Takasuka T, Agou T, Yamazaki T. Facile preparation of fluorine-containing 2,3-epoxypropanoates and their epoxy ring-opening reactions with various nucleophiles. Beilstein J Org Chem 2024; 20:2421-2433. [PMID: 39355856 PMCID: PMC11443650 DOI: 10.3762/bjoc.20.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
We describe herein a facile method to access 2,3-epoxyesters with fluorine-containing substituents at their 3-position starting from the corresponding enoates by utilization of the low-costed and easy-to-handle reagent, NaOCl·5H2O. Because very little has been disclosed about the reactivity of such 2,3-epoxyesters, their epoxy ring opening by a variety of nucleophiles was carried out and we succeeded in clarifying these chemo- as well as regioselective processes proceeding via the SN2 mechanism to mainly afford 2-substituted 3-hydroxyesters usually in a highly anti selective manner.
Collapse
Affiliation(s)
- Yutaro Miyashita
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan
| | - Sae Someya
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan
| | - Tomohiro Agou
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Takashi Yamazaki
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan
| |
Collapse
|
5
|
Abstract
Catalysts play a major role in chemical synthesis, and catalysis is considered to be a green and economic process. Catalysis is dominated by covalent interactions between the catalyst and substrate. The design of non-covalent catalysts came into limelight only recently. Hydrogen bonding (HB) catalysts are well established among non-covalent catalysts, including asymmetric HB catalysts. Though halogen bonding (XB) catalysis and its asymmetric version are gaining admiration, non-covalent chalcogen bonding catalysis (ChB) is in the budding stage. This tutorial review will focus on the recently evolved chalcogen bonding catalysis and emphasis will be given to the chalcogen bonding of chiral molecules. Since successful enantioselective chalcogen bonding catalysis is yet to be reported, this review will focus on the basics of non-covalent bonding catalysis, chalcogen bonding catalysis, chiral chalcogenide synthesis, rigidification of transition states by ChB, stabilization of cations by chiral chalcogens, details of unsuccessful asymmetric chalcogen bonding catalysis, enantioseparation of racemic molecules using ChB, and the existence of ChB in chiral biomolecules.
Collapse
Affiliation(s)
- Govindasamy Sekar
- Department of Chemistry, IIT Madras, Chennai, Tamilnadu-600 036, India.
| | | | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Science and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Yuan D, Goodfellow AS, Kasten K, Duan Z, Kang T, Cordes DB, McKay AP, Bühl M, Boyce GR, Smith AD. Understanding divergent substrate stereoselectivity in the isothiourea-catalysed conjugate addition of cyclic α-substituted β-ketoesters to α,β-unsaturated aryl esters. Chem Sci 2023; 14:14146-14156. [PMID: 38098722 PMCID: PMC10717594 DOI: 10.1039/d3sc05470e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
The development of enantioselective synthetic methods capable of generating vicinal stereogenic centres, where one is tetrasubstituted (such as either an all-carbon quaternary centre or where one or more substituents are heteroatoms), is a recognised synthetic challenge. Herein, the enantioselective conjugate addition of a range of carbo- and heterocyclic α-substituted β-ketoesters to α,β-unsaturated aryl esters using the isothiourea HyperBTM as a Lewis base catalyst is demonstrated. Notably, divergent diastereoselectivity is observed through the use of either cyclopentanone-derived or indanone-derived substituted β-ketoesters with both generating the desired stereodefined products with high selectivity (>95 : 5 dr, up to 99 : 1 er). The scope and limitations of these processes are demonstrated, alongside application on gram scale. The origin of the divergent substrate selectivity has been probed through the use of DFT-analysis, with preferential orientation driven by dual stabilising CH⋯O interactions. The importance of solvation with strongly polar transition-states is highlighted and the SMD solvation model is demonstrated to capture solvation effects reliably.
Collapse
Affiliation(s)
- Ding Yuan
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
- School of Biological and Chemical Engineering, Panzhihua University Panzhihua 617000 China
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Zhuan Duan
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Tengfei Kang
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Gregory R Boyce
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
- Department of Chemistry and Physics, Florida Gulf Coast University Fort Myers Florida 33965 USA
- Department of Chemistry and Biochemistry, East Stroudsburg University East Stroudsburg Pennsylvania 18301 USA
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
7
|
Nimmo AJ, Bitai J, Young CM, McLaughlin C, Slawin AMZ, Cordes DB, Smith AD. Enantioselective isothiourea-catalysed reversible Michael addition of aryl esters to 2-benzylidene malononitriles. Chem Sci 2023; 14:7537-7544. [PMID: 37449062 PMCID: PMC10337745 DOI: 10.1039/d3sc02101g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Catalytic enantioselective transformations usually rely upon optimal enantioselectivity being observed in kinetically controlled reaction processes, with energy differences between diastereoisomeric transition state energies translating to stereoisomeric product ratios. Herein, stereoselectivity resulting from an unusual reversible Michael addition of an aryl ester to 2-benzylidene malononitrile electrophiles using an isothiourea as a Lewis base catalyst is demonstrated. Notably, the basicity of the aryloxide component and reactivity of the isothiourea Lewis base both affect the observed product selectivity, with control studies and crossover experiments indicating the feasibility of a constructive reversible Michael addition from the desired product. When this reversible addition is coupled with a crystallisation-induced diastereomer transformation (CIDT) it allows isolation of products in high yield and stereocontrol (14 examples, up to 95 : 5 dr and 99 : 1 er). Application of this process to gram scale, plus derivatisations to provide further useful products, is demonstrated.
Collapse
Affiliation(s)
- Alastair J Nimmo
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Jacqueline Bitai
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Claire M Young
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Calum McLaughlin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
8
|
Sarkar A, Mistry S, Bhattacharya S, Natarajan S. Multistep Cascade Catalytic Reactions Employing Bifunctional Framework Compounds. Inorg Chem 2023. [PMID: 37393542 DOI: 10.1021/acs.inorgchem.3c01243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Multistep cascade reactions are important to achieve atom as well as step economy over conventional synthesis. This approach, however, is limited due to the incompatibility of the available reactive centers in a catalyst. In the present study, new MOF compounds, [Zn2(SDBA)(3-ATZ)2]·solvent, I and II, with tetrahedral Zn centers as good Lewis acidic sites and the free amino group of the 3-amino triazole ligand as a strong Lewis base center were shown to perform 4-step cascade/tandem reaction in a facile manner. Effective conversion of benzaldehyde dimethyl acetal in the presence of excess nitromethane at 100 °C in water to 1-(1,3-dinitropropan-2-yl) benzene was achieved in 10 h with yields of ∼95% (I) and ∼94% (II). This 4-step cascade reaction proceeds via deacetalization (Lewis acid), Henry (Lewis base), and Michael (Lewis base) reactions. The present work highlights the importance of spatially separated functional groups in multistep tandem catalysis─the examples of which are not common.
Collapse
Affiliation(s)
- Anupam Sarkar
- Solid State and Structural Chemistry Unit, Framework Solids Laboratory, Indian Institute of Science, Bangalore 560012, India
| | - Subhradeep Mistry
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University, SRT Campus, New Tehri 249199, Uttarakhand, India
| | - Saurav Bhattacharya
- Department of Chemistry, BITS Pilani K. K. Birla Goa Campus, Goa 403726, India
| | - Srinivasan Natarajan
- Solid State and Structural Chemistry Unit, Framework Solids Laboratory, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Morales-Manrique C, Baquero EA, Guevara-Pulido J. Recent Advances in the Synthesis of 3,4-Dihydropyran-2-Ones Organocatalyzed by N-Heterocyclic Carbenes. Molecules 2023; 28:molecules28093743. [PMID: 37175154 PMCID: PMC10179788 DOI: 10.3390/molecules28093743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, N-heterocyclic carbenes (NHC) have gained recognition as versatile molecules capable of acting as organocatalysts in various reactions, particularly through the activation of aldehydes via Breslow-type adducts. This organocatalytic activation has enabled the production of numerous 3,4-dihydropyran-2-ones and related derivatives. In this review, we provide an overview of the production of 3,4-dihydropyran-2-ones and derivatives via organocatalytic processes involving NHCs over the past eight years. These processes involve the use of a diverse range of substrates, catalysts, and reaction conditions, which can be classified into [4+2]-and [3+3]-type cycloadditions, primarily aimed at synthesizing this skeleton due to its biological activity and multiple stereocenters. These processes are scaled up to the gram scale, and the resulting products are often directed towards epimerization and functionalization to produce more complex molecules with potential applications in the biological field. Finally, we provide a perspective and the future directions of this topic in organic synthesis.
Collapse
Affiliation(s)
- Camilo Morales-Manrique
- Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá 111321, Colombia
- INQA, Química Farmacéutica, Facultad de Ciencias, Universidad El Bosque, Bogotá 11001, Colombia
| | - Edwin A Baquero
- Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá 111321, Colombia
| | - James Guevara-Pulido
- INQA, Química Farmacéutica, Facultad de Ciencias, Universidad El Bosque, Bogotá 11001, Colombia
| |
Collapse
|
10
|
Wang L, Zheng Y, Zhou X, Wang H, Yan Q, Wang W, Chen F. Synthesis of α-Aryl Nitriles via Nucleophilic Substitution of α-Cyanohydrin Methanesulfonates with Malonates. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
11
|
Peluso P, Mamane V. Stereoselective Processes Based on σ-Hole Interactions. Molecules 2022; 27:molecules27144625. [PMID: 35889497 PMCID: PMC9323542 DOI: 10.3390/molecules27144625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
The σ-hole interaction represents a noncovalent interaction between atoms with σ-hole(s) on their surface (such as halogens and chalcogens) and negative sites. Over the last decade, significant developments have emerged in applications where the σ-hole interaction was demonstrated to play a key role in the control over chirality. The aim of this review is to give a comprehensive overview of the current advancements in the use of σ-hole interactions in stereoselective processes, such as formation of chiral supramolecular assemblies, separation of enantiomers, enantioselective complexation and asymmetric catalysis.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy
- Correspondence: (P.P.); (V.M.)
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 Rue Blaise Pascal, 67008 Strasbourg, France
- Correspondence: (P.P.); (V.M.)
| |
Collapse
|