1
|
Kondoh A, Suzuki H, Hirozane T, Terada M. Catalytic Generation of Benzyl Anions from Aryl Ketones Utilizing [1,2]-Phospha-Brook Rearrangement and Their Application to Synthesis of Tertiary Benzylic Alcohols. Chemistry 2024; 30:e202402967. [PMID: 39215614 DOI: 10.1002/chem.202402967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
A synthetic method of tertiary alcohols was developed based on the formal umpolung addition of aryl ketones with electrophiles utilizing the [1,2]-phospha-Brook rearrangement under Brønsted base catalysis. The addition reaction of α-hydroxyphosphonates, derived from alkyl aryl- and diaryl ketones, with electrophiles such as phenyl vinyl sulfone, afforded phosphates having a tertiary alkyl group, which were readily convertible to the corresponding tertiary benzylic alcohols. This operationally simple protocol provides efficient complementary access to tertiary alcohols that are difficult to synthesize by conventional methods.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hirochika Suzuki
- Department of Chemistry, Graduate, School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takayuki Hirozane
- Department of Chemistry, Graduate, School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate, School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
2
|
Yue F, Li M, Yang K, Song H, Liu Y, Wang Q. Deboronative functionalization of alkylboron species via a radical-transfer strategy. Chem Sci 2024:d4sc02889a. [PMID: 39144459 PMCID: PMC11320062 DOI: 10.1039/d4sc02889a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
With advances in organoboron chemistry, boron-centered functional groups have become increasingly attractive. In particular, alkylboron species are highly versatile reagents for organic synthesis, but the direct generation of alkyl radicals from commonly used, bench-stable boron species has not been thoroughly investigated. Herein, we describe a method for activating C-B bonds by nitrogen- or oxygen-radical transfer that is applicable to alkylboronic acids and esters and can be used for both Michael addition reactions and Minisci reactions to generate alkyl or arylated products.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Mingxing Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Kangkang Yang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
3
|
Dong CL, Liu HC, Guan Z, He YH. Photoredox-Neutral Radical-Radical Cross-Coupling of Isatins and Benzyl Carboxylic Acids. J Org Chem 2024; 89:10929-10938. [PMID: 39034667 DOI: 10.1021/acs.joc.4c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A photoredox-neutral radical-radical cross-coupling is described for the synthesis of 3-hydroxy-3-alkyloxindoles using isatins and benzyl carboxylic acids as substrates and 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as the photocatalyst. The method features a broad substrate scope and good functional group tolerance, providing 30 sterically hindered alcohols with moderate to excellent yields. This approach utilizes inexpensive and commercially available starting materials, avoiding the use of transition metals, extra oxidants/reductants, and harsh reaction conditions, showcasing significant applicability and environmental friendliness.
Collapse
Affiliation(s)
- Chun-Lin Dong
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Han-Chi Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Sato K, Egami H, Hamashima Y. Thiobenzoic Acid-Catalyzed Cα-H Cross Coupling of Benzyl Alcohols with α-Ketoacid Derivatives. Org Lett 2024; 26:5285-5289. [PMID: 38869244 DOI: 10.1021/acs.orglett.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The C-H alkylation of benzyl alcohols with α-ketoacid derivatives was achieved in the presence of thiobenzoic acid with or without Ru or Ir photoredox catalysts. The thiobenzoic acid serves as a photoexcited single-electron reducing reagent and a hydrogen atom transfer catalyst, while addition of the metal photoredox catalyst assists the electron transfer and improves the reaction efficiency. Various functional groups were tolerant of the reaction conditions, and sterically hindered diols were produced in good to high yield.
Collapse
Affiliation(s)
- Kaichi Sato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiromichi Egami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
5
|
Feng S, Liu H, Li Y, Fang Y. Photoredox-catalyzed radical-radical cross coupling of ketyl radicals with unstabilized primary alkyl radicals. Chem Commun (Camb) 2024; 60:4431-4434. [PMID: 38563261 DOI: 10.1039/d4cc00620h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, a novel protocol dealing with the preparation of sterically hindered alcohols has been successfully developed via radical-radical coupling reactions enabled by mild and redox-neutral photocatalysis. With alkylsilicates as the radical precursors, a range of primary alkyl radicals bearing various functional groups could couple with a range of phthalimides and activated ketones.
Collapse
Affiliation(s)
- Shishen Feng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 YouyiDadao, Wuhan 430062, China.
| | - Hong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 YouyiDadao, Wuhan 430062, China.
| | - Yan Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 YouyiDadao, Wuhan 430062, China.
| | - Yewen Fang
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China.
- Zhejiang Institute of Tianjin University, No. 201 Fenghua Road, Ningbo 315211, China
| |
Collapse
|
6
|
Song S, Li Z, Wang L, Zeng T, Hu Q, Zhu J. Photoredox and NHC Enabled Deoxygenative Alcohol Homologation via Formal 1,2-Addition. Org Lett 2024; 26:264-268. [PMID: 38147643 DOI: 10.1021/acs.orglett.3c03857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
A highly efficient photoinduced iron-catalyzed method has been developed for the direct use of alcohols as surrogates for organometallic reagents in the synthesis of tertiary alcohols. This method can be applied to both primary and secondary alcohols with diverse structures, enabling their reaction with aryl ketones under mild conditions. A variety of functional groups, including those that are typically reactive under conventional tertiary alcohol synthesis conditions, are compatible. Mechanistically, this reaction proceeds through the direct addition of the radical to the carbonyl pathway.
Collapse
Affiliation(s)
- Shuo Song
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhongxian Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lele Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Tianlong Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Qiang Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jun Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
7
|
Samanta D, Saha P, Maity S, Mondal S, Ghosh P. Coligands Controlled Reactivities of Ruthenium(II) Precursors: Antiferromagnetically Coupled Ruthenium(III)-Phenoxyl versus Ruthenium(II)-Phenoxyl Forms. Inorg Chem 2024; 63:229-246. [PMID: 38141026 DOI: 10.1021/acs.inorgchem.3c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The study disclosed that the reactivities of [RuII (PPh3)3Cl2] and [RuII(PPh3)3(CO)(H)Cl] precursors toward a trimethoxyarylimino-phenol derivative are sensibly different. The former promotes methoxy demethylation reaction affording a [Phenolato-RuIII-Phenolato] unit, while the latter containing π-acidic CO and hydride as coligands leads to C-H activation reaction, generating a [Phenolato-RuII-Aryl] unit. Notably, the oxidized analogues of these two forms produce antiferromagnetically coupled [RuIII-phenoxyl] and paramagnetic [RuII-phenoxyl] forms, which exhibit diverse reactivities. Surprisingly, the magnetically coupled [RuIII-phenoxyl] form obtained from [Phenolato-RuIII-Phenolato] motif leads to coligand, PPh3 oxidation and undergoes dimerization, making a Ru-Ru bond (2.599(2) Å), while the [RuII-phenoxyl] form obtained from [Phenolato-RuII-Aryl] motif leads to C-C coupling and H abstraction reactions. The coupling reaction affords a 4,4'-dibenzosemiquinonate anion radical complex, but the H-abstraction of the phenoxyl form gives a [RuII-Phenol] complex. For comparison, [RuII(IQR 0)] and [RuII(ISQR·-)] complexes were also isolated, where IQR 0 and ISQR·- are p-R-o-iminobenzoquinone and p-R-o-iminobenzosemiquinonate anion radicals. However, they fail to promote any bond-formation reaction. The molecular and electronic structures of the ruthenium (II/III) complexes were confirmed by single-crystal X-ray crystallography, EPR spectroscopy, and DFT calculations.
Collapse
Affiliation(s)
- Debasish Samanta
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Pinaki Saha
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Suvendu Maity
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Sudipto Mondal
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Prasanta Ghosh
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata 700103, India
| |
Collapse
|
8
|
Rourke MJ, McGill MJ, Yang D, Farnam EJ, Zhu JL, Scheidt KA. Photoredox-Catalyzed Radical-Radical Coupling of Potassium Trifluoroborates with Acyl Azoliums. Synlett 2023; 34:2175-2180. [PMID: 38948905 PMCID: PMC11210951 DOI: 10.1055/s-0041-1738448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Potassium trifluoroborates have gained significant utility as coupling partners in organic synthesis, particularly in the Suzuki-Miyaura coupling reaction. Recently, they have also been used as radical precursors under oxidative conditions to generate carbon-centered radicals. These versatile reagents have found new applications in photoredox catalysis, including radical substitution, conjugate addition reactions, and transition metal dual catalysis. In addition, this photomediated redox neutral process has enabled radical-radical coupling with persistent radicals in the absence of a metal, and this process remains to be fully explored. In this study, we report the radical-radical coupling of benzylic potassium trifluoroborate salts with isolated acyl azolium triflates, which are persistent radical precursors. The reaction is catalyzed by an organic photocatalyst and forms isolable tertiary alcohol species. These compounds can be transformed into a range of substituted ketone products by simple treatment with a mild base.
Collapse
Affiliation(s)
- Michael J. Rourke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Matthew J. McGill
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Daniel Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Emelia J. Farnam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Joshua L. Zhu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| |
Collapse
|
9
|
Wang Z, Wierich N, Zhang J, Daniliuc CG, Studer A. Alkyl Radical Generation from Alkylboronic Pinacol Esters through Substitution with Aminyl Radicals. J Am Chem Soc 2023; 145:8770-8775. [PMID: 37058606 DOI: 10.1021/jacs.3c01129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Alkylboronic pinacol esters (APEs) are highly versatile reagents in organic synthesis. However, the direct generation of alkyl radicals from commonly used, bench-stable APEs has not been well explored. In this communication, alkyl radical generation from APEs through reaction with aminyl radicals is reported. The aminyl radicals are readily generated by visible-light-induced homolytic cleavage of the N-N bond in N-nitrosamines, and C radical generation occurs through nucleohomolytic substitution at boron. As an application, the highly efficient photochemical radical alkyloximation of alkenes with APEs and N-nitrosamines under mild conditions is presented. A wide range of primary, secondary, and tertiary APEs engage in this transformation that is easily scaled up.
Collapse
Affiliation(s)
- Zhe Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Nick Wierich
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Jingjing Zhang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
10
|
Wang ZK, Wang YP, Rao ZW, Liu CY, Pan XH, Guo L. General Method for Selective Three-Component Carboacylation of Alkenes via Visible-Light Dual Photoredox/Nickel Catalysis. Org Lett 2023; 25:1673-1677. [PMID: 36880593 DOI: 10.1021/acs.orglett.3c00307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
A photoredox/nickel dual catalytic protocol for the regioselective three-component carboacylation of alkenes with tertiary and secondary alkyltrifluoroborates as well as acyl chlorides is described. This redox-neutral protocol can be applied to the rapid synthesis of ketones with high diversity and complexity via a radical relay process. Many functional groups, allowing for various commercially available acyl chlorides, alkyltrifluoroborates, and alkenes, are tolerated under these mild conditions.
Collapse
Affiliation(s)
- Zi-Kai Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Ya-Ping Wang
- Shanghai BIOS Technology Co., Ltd., 659 Maoyuan Road, Fengxian District, Shanghai 201418, China
| | - Zhi-Wu Rao
- Shanghai BIOS Technology Co., Ltd., 659 Maoyuan Road, Fengxian District, Shanghai 201418, China
| | - Chun-Yu Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xian-Hua Pan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Lei Guo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
11
|
Jiang HL, Yang YH, Zhao YN, He YH, Guan Z. Silyl-mediated photoredox-catalyzed radical–radical cross-coupling reaction of alkyl bromides and ketoesters. Org Chem Front 2022. [DOI: 10.1039/d2qo01377k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A strategy for cross-coupling between organic bromides and carbonyl compounds is developed by combining photocatalysis and halogen atom transfer using a photocatalyst and tris(trimethylsilyl)silane.
Collapse
Affiliation(s)
- Hao-Luo Jiang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu-Hao Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ya-Nan Zhao
- Analytical and Testing Center, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|