1
|
Song Y, Liu Z, Liu C, Zhang J, Zhao Y. Construction of Benzoxazole and Isoquinoline Compounds via Base-Mediated Cyclization of Amino Acid Derivatives. Org Lett 2025; 27:3060-3065. [PMID: 40103404 DOI: 10.1021/acs.orglett.5c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Biological organisms contain bioactive macromolecules such as amino acids, which serve as basic materials for constructing cells and repairing tissues. Due to the unique properties of the fluorine atom, which can alter the structure of proteins and increase their lipophilicity, incorporating a fluorine atom into amino acids has become a research hotspot. In this study, ethyl 3-bromo-2-((diphenylmethylene)amino)-3,3-difluoropropanoate was synthesized from glycine derivatives. Under alkaline conditions, this compound reacted with 2-aminophenol to generate a benzoxazole-containing amino acid derivative. This method is simple to operate, without metal participation, and is performed under relatively eco-friendly reaction conditions, providing a novel approach for the synthesis of benzoxazole heterocycles.
Collapse
Affiliation(s)
- Yilian Song
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zechao Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chuangchuang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingyu Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
2
|
Li X, Shan W, Zhou N, Wang Z, Liu R, Zhuang W, Yuan L, Shi C, Qin H, Chen J, Li X, Shi D. Nickel-Catalyzed Stereoconvergent C(sp 2)-F Alkenylation of Monofluoroalkenes. Org Lett 2024; 26:8521-8526. [PMID: 39331506 DOI: 10.1021/acs.orglett.4c03107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The stereoconvergent synthesis of a single stereoisomer from E/Z-olefin mixtures remains one of the foremost challenges in organic synthesis. Herein, we describe a nickel-catalyzed stereoconvergent cross-coupling between E- and Z-mixed monofluoroalkenes and alkenyl electrophiles, which allows the construction of C(sp2)-C(sp2) bonds. This defluorinative transformation offers facile access to various 1,3-dienes with E-selectivity and good functional group tolerance. Preliminary mechanistic studies indicate that the reaction most likely proceeds through a migratory insertion/β-F elimination/isomerization process.
Collapse
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wenlong Shan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Nan Zhou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wenli Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Leifeng Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hongyun Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiashu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Semeniuk T, Dudas T, Okeh E, Felesky T, Hamel JD. Photocatalytic Defluorinative α-Aminoalkylation of Allylic Difluorides. J Org Chem 2024; 89:13669-13677. [PMID: 39232656 DOI: 10.1021/acs.joc.4c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A photocatalytic process was devised to synthesize monofluoroalkenes via defluorinative functionalization of allylic difluorides. N-Alkylanilines are used as precursors to α-aminoalkyl radicals, which undergo regioselective addition to allylic difluorides, and subsequent SET and fluoride elimination produce monofluoroalkenes. C-C bond formation on the aniline is site-selective for the least substituted carbon α to nitrogen.
Collapse
Affiliation(s)
- Taylor Semeniuk
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Ty Dudas
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Esther Okeh
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Tanner Felesky
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Jean-Denys Hamel
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
4
|
Sedikides A, Lennox AJJ. Silver-Catalyzed ( Z)-β-Fluoro-vinyl Iodonium Salts from Alkynes: Efficient and Selective Syntheses of Z-Monofluoroalkenes. J Am Chem Soc 2024; 146:15672-15680. [PMID: 38829699 PMCID: PMC11177317 DOI: 10.1021/jacs.4c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Monofluoroalkenes are stable and lipophilic amide bioisosteres used in medicinal chemistry. However, efficient and stereoselective methods for synthesizing Z-monofluoroalkenes are underdeveloped. We envisage (Z)-β-fluoro-vinyl iodonium salts (Z-FVIs) as coupling partners for the diverse and stereoselective synthesis of Z-monofluoroalkenes. Disclosed herein is the development and application of a silver(I)-catalyzed process for accessing a broad scope of (Z)-FVIs with exclusive Z-stereoselectivity and regioselectivity from alkynes in a single step. Experimental and computational studies provide insight into the mechanism of the catalytic cycle and the role of the silver(I) catalyst, and the reactivity of (Z)-FVIs is explored through several stereospecific derivatizations.
Collapse
Affiliation(s)
- Alexi
T. Sedikides
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Alastair J. J. Lennox
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
5
|
Li M, Tsui GC. Rhodium(I)-Catalyzed Defluorinative Bisarylation of Monofluorodienes with Boronic Acids. Org Lett 2024; 26:2223-2227. [PMID: 38465893 DOI: 10.1021/acs.orglett.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
We herein describe a Rh(I)-catalyzed bisarylation reaction of monofluorodienes using arylboronic acids. Two aryl groups are installed in the trisubstituted (E)-alkene products in one step with excellent diastereoselectivities. An intriguing reaction sequence of Rh(I)-catalyzed 1,6-addition followed by defluorinative coupling is proposed for product formation.
Collapse
Affiliation(s)
- Min Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Zhang K, Chen X, Zhang Z, Bu C, Wu Y, Xu J. Exploring α-electron-deficiency-induced [1,2]-fluorine migration. Org Biomol Chem 2023; 21:8675-8689. [PMID: 37860877 DOI: 10.1039/d3ob01335a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The present study investigates the standard model of [1,2]-fluorine migration and that triggered by the rearrangement of cyclopropyl-substituted fluoroepoxides. The [1,2]-fluorine migration reaction proceeds via a synchronous concerted, tight-ion-pair mechanism. When coupled with other reaction coordinates, the whole reaction follows an asynchronous mechanism, while the [1,2]-fluorince migration unit still retains its tight-ion-pair feature and the reaction coordinates of two C-F distances vary synchronously. A general reaction program for α-electron-deficiency-induced [1,2]-fluorine migration is proposed through an analysis of the intermediates generated from nucleophilic addition. The reaction mechanisms associated with α-electron deficiency and the rearrangement are scrutinized using computational chemistry. Two additional reaction programs for [1,2]-fluorine migration are identified. The Gibbs free energy change of [1,2]-fluorine migration exhibits a linear dependence on the value of the Fukui function of the substrate, which could lead to the production of the desired α-monofluoroketone and enhance the utilization of fluorine atoms.
Collapse
Affiliation(s)
- Ke Zhang
- College of Paediatric, Chongqing Medical University, Chongqing 401331, Chongqing, China
| | - Xi Chen
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhoujie Zhang
- Jiangsu Key Laboratory of Numerical Simulation of Large-Scale Complex System (NSLSCS), School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
| | - Caijie Bu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China.
| | - Yong Wu
- Jiangsu Key Laboratory of Numerical Simulation of Large-Scale Complex System (NSLSCS), School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
| | - Jiawei Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China.
| |
Collapse
|
7
|
Li MY, Zhai S, Nong XM, Gu A, Li J, Lin GQ, Liu Y. Trisubstituted alkenes featuring aryl groups: stereoselective synthetic strategies and applications. Sci China Chem 2023; 66:1261-1287. [DOI: 10.1007/s11426-022-1515-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 03/07/2024]
|
8
|
Tan H, Zong Y, Tang Y, Tsui GC. Stereoselective Rhodium(I)-Catalyzed C-F Bond Arylation of Tri- and Tetrasubstituted gem-Difluoroalkenes with Boronic Acids. Org Lett 2023; 25:877-882. [PMID: 36722735 DOI: 10.1021/acs.orglett.3c00108] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We herein describe a highly diastereoselective rhodium(I)-catalyzed C-F bond functionalization of gem-difluoroalkenes with arylboronic acids. In contrast to previously developed Pd(II)- and Pd(0)-catalyzed methods, the Rh(I)/BINAP catalytic system enabled the C-F bond arylation of both trisubstituted β,β-difluorostyrenes and tetrasubstituted β,β-difluoroacrylates in >99:1 dr toward the synthesis of valuable monofluoroalkenes. Experimental and computational studies suggested a plausible migratory insertion/β-F elimination mechanism with the [Rh(I)-Ar] species.
Collapse
Affiliation(s)
- Hao Tan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin 999077, New Territories, Hong Kong SAR, China
| | - Yuwei Zong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin 999077, New Territories, Hong Kong SAR, China
| | - Yihan Tang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin 999077, New Territories, Hong Kong SAR, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin 999077, New Territories, Hong Kong SAR, China
| |
Collapse
|