1
|
Lv HW, Tang JG, Wei B, Zhu MD, Zhang HW, Zhou ZB, Fan BY, Wang H, Li XN. Bioinformatics assisted construction of the link between biosynthetic gene clusters and secondary metabolites in fungi. Biotechnol Adv 2025; 81:108547. [PMID: 40024584 DOI: 10.1016/j.biotechadv.2025.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Fungal secondary metabolites are considered as important resources for drug discovery. Despite various methods being employed to facilitate the discovery of new fungal secondary metabolites, the trend of identifying novel secondary metabolites from fungi is inevitably slowing down. Under laboratory conditions, the majority of biosynthetic gene clusters, which store information for secondary metabolites, remain inactive. Therefore, establishing the link between biosynthetic gene clusters and secondary metabolites would contribute to understanding the genetic logic underlying secondary metabolite biosynthesis and alleviating the current challenges in discovering novel natural products. Bioinformatics methods have garnered significant attention due to their powerful capabilities in data mining and analysis, playing a crucial role in various aspects. Thus, we have summarized successful cases since 2016 in which bioinformatics methods were utilized to establish the link between fungal biosynthetic gene clusters and secondary metabolites, focusing on their biosynthetic gene clusters and associated secondary metabolites, with the goal of aiding the field of natural product discovery.
Collapse
Affiliation(s)
- Hua-Wei Lv
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hang Zhou, PR China; School of Pharmacy, Youjiang Medical University for Nationalities, Baise, PR China
| | - Jia-Gui Tang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hang Zhou, PR China
| | - Bin Wei
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hang Zhou, PR China
| | - Meng-Di Zhu
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hang Zhou, PR China
| | - Hua-Wei Zhang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hang Zhou, PR China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, PR China
| | - Bo-Yi Fan
- School of Pharmacy, Nantong University, Nantong, PR China
| | - Hong Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hang Zhou, PR China
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hang Zhou, PR China.
| |
Collapse
|
2
|
Li ZH, Dai Y, Zhou J, Yang L, Li SM. Formation of N-Hydroxyethylisoindolinone Derivatives in Fungi Requires Highly Coordinated Consecutive Oxidation Steps. Org Lett 2025; 27:2433-2437. [PMID: 40029258 PMCID: PMC11915489 DOI: 10.1021/acs.orglett.5c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Gene duplication significantly contributes to the diversification of biosynthetic potential and increases the structural diversity of secondary metabolites. Here, we report the second alkyl salicylaldehyde derivative biosynthetic gene cluster in Penicillium roqueforti, being responsible for the formation of ethanolamine-containing derivatives. Heterologous expression and feeding experiments provided evidence for their formation via collaboration and modification with one cytochrome P450 and two flavin-containing monooxygenases in a highly ordered manner before and after ethanolamine incorporation.
Collapse
Affiliation(s)
- Zhang-Hai Li
- Institut
für Pharmazeutische Biologie und Biotechnologie, Fachbereich
Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Yu Dai
- Institut
für Pharmazeutische Biologie und Biotechnologie, Fachbereich
Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jing Zhou
- Key
Laboratory of Tropical Biological Resources of Ministry of Education,
School of Pharmaceutical Sciences, Hainan
University, 570200 Haikou, P. R. China
| | - Li Yang
- Haikou
Key Laboratory for Research and Utilization of Tropical Natural Products
and National Key Laboratory for Tropical Crop Breeding, Institute
of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, P. R. China
| | - Shu-Ming Li
- Institut
für Pharmazeutische Biologie und Biotechnologie, Fachbereich
Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
3
|
Yuan L, Wang J, Tang Q, Wang Y, Ma B, Shang Y, He X. DBU-catalyzed annulation strategy for modular assembly of 2,3-difunctionalized dihydrobenzofurans. Org Biomol Chem 2025; 23:1832-1836. [PMID: 39815825 DOI: 10.1039/d4ob01406e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
An organocatalytic approach for the construction of 2,3-dihydrobenzofuran scaffold through a formal [4 + 1] annulation of 2-(2-nitrovinyl)phenols and α-bromoacetophenones in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) has been developed. This protocol could be easily performed in one mmol scale, giving a broad range of 2,3-dihydrobenzofuran derivatives in moderate to excellent yields and remarkable diastereoselectivity (>20 : 1 dr in general) with good functional group tolerance.
Collapse
Affiliation(s)
- Lili Yuan
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
| | - Jie Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, P.R. China
| | - Yiping Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
| | - Beibei Ma
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
| |
Collapse
|
4
|
Breyer D, Chen L, Zhou J, Li ZH, Li SM. Expression of a Colletotrichum polyketide synthase gene in Aspergillus nidulans leads to unexpected conjugates with a host metabolite. Arch Microbiol 2025; 207:52. [PMID: 39912893 PMCID: PMC11802603 DOI: 10.1007/s00203-025-04258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Heterologous expression of the putative 1,3,6,8-tetrahydroxynaphthalene synthase gene ChPKS from Colletotrichum higginsianum in Aspergillus nidulans led to the formation of at least eight new compounds. LC-MS analysis proved them as coupling products of 1,3,6,8-tetrahydroxynaphthalene with an intermediate of the cichorine biosynthetic pathway. Comprehensive NMR analysis confirmed the structures of the two predominant products higginidulans A and B. Deletion of the backbone gene of the cichorine pathway in host strain Aspergillus nidulans abolished the formation of higginidulans. Heterologous expression of ChPKS in the alternative Penicillium crustosum expression host resulted in the formation of the expected product 1,3,6,8-tetrahydroxynaphthalene, which was confirmed by acetylation and structural elucidation. This study provides an additional example of unexpected natural product formation by crosstalk of biosynthetic pathways derived from different species. Moreover, it highlights the importance of using alternative host systems for gene expression.
Collapse
Affiliation(s)
- David Breyer
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037, Marburg, Germany
| | - Leyao Chen
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037, Marburg, Germany
| | - Jenny Zhou
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037, Marburg, Germany
| | - Zhang-Hai Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037, Marburg, Germany.
| |
Collapse
|
5
|
Yuan GY, Zhang JM, Xu YQ, Zou Y. Biosynthesis and Assembly Logic of Fungal Hybrid Terpenoid Natural Products. Chembiochem 2024; 25:e202400387. [PMID: 38923144 DOI: 10.1002/cbic.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
In recent decades, fungi have emerged as significant sources of diverse hybrid terpenoid natural products, and their biosynthetic pathways are increasingly unveiled. This review mainly focuses on elucidating the various strategies underlying the biosynthesis and assembly logic of these compounds. These pathways combine terpenoid moieties with diverse building blocks including polyketides, nonribosomal peptides, amino acids, p-hydroxybenzoic acid, saccharides, and adenine, resulting in the formation of plenty of hybrid terpenoid natural products via C-O, C-C, or C-N bond linkages. Subsequent tailoring steps, such as oxidation, cyclization, and rearrangement, further enhance the biological diversity and structural complexity of these hybrid terpenoid natural products. Understanding these biosynthetic mechanisms holds promise for the discovery of novel hybrid terpenoid natural products from fungi, which will promote the development of potential drug candidates in the future.
Collapse
Affiliation(s)
- Guan-Yin Yuan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Yan-Qiu Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| |
Collapse
|
6
|
Crequer E, Coton E, Cueff G, Cristiansen JV, Frisvad JC, Rodríguez de la Vega RC, Giraud T, Jany JL, Coton M. Different metabolite profiles across Penicillium roqueforti populations associated with ecological niche specialisation and domestication. IMA Fungus 2024; 15:38. [PMID: 39609866 PMCID: PMC11605963 DOI: 10.1186/s43008-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/19/2024] [Indexed: 11/30/2024] Open
Abstract
Fungi are known to produce many chemically diversified metabolites, yet their ecological roles are not always fully understood. The blue cheese fungus Penicillium roqueforti thrives in different ecological niches and is known to produce a wide range of metabolites, including mycotoxins. Three P. roqueforti populations have been domesticated for cheese production and two populations thrive in other anthropized environments, i.e., food, lumber and silage. In this study, we looked for differences in targeted and untargeted metabolite production profiles between populations using HPLC-HR-Q-TOF and UHPLC-Q-TOF-HR-MS/MS. The non-cheese populations produced several fatty acids and different terpenoids, lacking in cheese strains. The Termignon cheese population displayed intermediate metabolite profiles between cheese and non-cheese populations, as previously shown for other traits. The non-Roquefort cheese population with the strongest domestication syndrome, produced the lowest quantities of measured metabolites, including mycophenolic acid (MPA), andrastin A and PR toxin. Its inability to produce MPA was due to a deletion in the mpaC gene, while a premature stop codon in ORF 11 of the PR toxin gene cluster explained PR toxin absence and the accumulation of its intermediates, i.e., eremofortins A and B. In the Roquefort population, we detected no PR toxin nor eremofortins A or B, but found no indel or frameshift mutation, suggesting downregulation. The hypotoxigenic trait of domesticated cheese populations can be hypothesized to be linked to the loss of this ability through trait degeneration and/or the selection of low toxin producers. It may also be due to the fact that populations from other anthropized environments maintained high metabolite diversity as the bioactivities of these compounds are likely important in these ecological niches.
Collapse
Affiliation(s)
- E Crequer
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, AgroParisTech, Université Paris-Saclay, CNRS, Bâtiment 680, 12 Route RD 128, 91190, Gif-Sur-Yvette, France
| | - E Coton
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France
| | - G Cueff
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France
| | - J V Cristiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - R C Rodríguez de la Vega
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, AgroParisTech, Université Paris-Saclay, CNRS, Bâtiment 680, 12 Route RD 128, 91190, Gif-Sur-Yvette, France
| | - T Giraud
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, AgroParisTech, Université Paris-Saclay, CNRS, Bâtiment 680, 12 Route RD 128, 91190, Gif-Sur-Yvette, France
| | - J-L Jany
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France
| | - M Coton
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France.
| |
Collapse
|
7
|
Peter M, Li SM. Cupin-domain containing protein is not essential for the alkyl salicylaldehyde formation in Aspergillus ustus. Chem Commun (Camb) 2024; 60:11556-11559. [PMID: 39311923 DOI: 10.1039/d4cc04227a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Previous studies demonstrated the requirement of four enzymes including a cupin-domain containing protein for the formation of alkyl salicylaldehydes and derivatives. Heterologous expression of three biosynthetic genes from Aspergillus ustus resulted in the formation of such compounds in high-yields without involvement of a cupin analogue.
Collapse
Affiliation(s)
- Marlies Peter
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg 35037, Germany.
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg 35037, Germany.
| |
Collapse
|
8
|
Tjallinks G, Mattevi A, Fraaije MW. Biosynthetic Strategies of Berberine Bridge Enzyme-like Flavoprotein Oxidases toward Structural Diversification in Natural Product Biosynthesis. Biochemistry 2024; 63:2089-2110. [PMID: 39133819 PMCID: PMC11375781 DOI: 10.1021/acs.biochem.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Berberine bridge enzyme-like oxidases are often involved in natural product biosynthesis and are seen as essential enzymes for the generation of intricate pharmacophores. These oxidases have the ability to transfer a hydride atom to the FAD cofactor, which enables complex substrate modifications and rearrangements including (intramolecular) cyclizations, carbon-carbon bond formations, and nucleophilic additions. Despite the diverse range of activities, the mechanistic details of these reactions often remain incompletely understood. In this Review, we delve into the complexity that BBE-like oxidases from bacteria, fungal, and plant origins exhibit by providing an overview of the shared catalytic features and emphasizing the different reactivities. We propose four generalized modes of action by which BBE-like oxidases enable the synthesis of natural products, ranging from the classic alcohol oxidation reactions to less common amine and amide oxidation reactions. Exploring the mechanisms utilized by nature to produce its vast array of natural products is a subject of considerable interest and can lead to the discovery of unique biochemical activities.
Collapse
Affiliation(s)
- Gwen Tjallinks
- Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Groningen 9747 AG, The Netherlands
- Department
of Biology and Biotechnology, University
of Pavia, Pavia 27100, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University
of Pavia, Pavia 27100, Italy
| | - Marco W. Fraaije
- Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
9
|
Zhou J, Chen X, Li SM. Construction of an expression platform for fungal secondary metabolite biosynthesis in Penicillium crustosum. Appl Microbiol Biotechnol 2024; 108:427. [PMID: 39046587 PMCID: PMC11269504 DOI: 10.1007/s00253-024-13259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Filamentous fungi are prolific producers of bioactive natural products and play a vital role in drug discovery. Yet, their potential cannot be fully exploited since many biosynthetic genes are silent or cryptic under laboratory culture conditions. Several strategies have been applied to activate these genes, with heterologous expression as one of the most promising approaches. However, successful expression and identification of new products are often hindered by host-dependent factors, such as low gene targeting efficiencies, a high metabolite background, or a lack of selection markers. To overcome these challenges, we have constructed a Penicillium crustosum expression host in a pyrG deficient strain by combining the split-marker strategy and CRISPR-Cas9 technology. Deletion of ligD and pcribo improved gene targeting efficiencies and enabled the use of an additional selection marker in P. crustosum. Furthermore, we reduced the secondary metabolite background by inactivation of two highly expressed gene clusters and abolished the formation of the reactive ortho-quinone methide. Finally, we replaced the P. crustosum pigment gene pcr4401 with the commonly used Aspergillus nidulans wA expression site for convenient use of constructs originally designed for A. nidulans in our P. crustosum host strain. As proof of concept, we successfully expressed a single polyketide synthase gene and an entire gene cluster at the P. crustosum wA locus. Resulting transformants were easily detected by their albino phenotype. With this study, we provide a highly efficient platform for heterologous expression of fungal genes. KEY POINTS: Construction of a highly efficient Penicillium crustosum heterologous expression host Reduction of secondary metabolite background by genetic dereplication strategy Integration of wA site to provide an alternative host besides Aspergillus nidulans.
Collapse
Affiliation(s)
- Jenny Zhou
- Institut Für Pharmazeutische Biologie Und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Xiaoling Chen
- Institut Für Pharmazeutische Biologie Und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Shu-Ming Li
- Institut Für Pharmazeutische Biologie Und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany.
| |
Collapse
|
10
|
Wang S, Wang M, Duan C, Yao Y, Ren J, Liu L, Pan Y, Liu G. A Berberine Bridge Enzyme-like Oxidase Mediates the Cage-like Acresorbicillinol C Biosynthesis. Org Lett 2024; 26:642-646. [PMID: 38214302 DOI: 10.1021/acs.orglett.3c03966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Oxosorbicillinol and cage-like acresorbicillinol C are bioactive sorbicillinoids produced by Acremonium chrysogenum. We found that a berberine bridge enzyme-like oxidase AcsorD was responsible for their biosynthesis by gene deletion and heterologous expression. AcsorD catalyzed oxidation of sorbicillinol to form oxosorbicillinol in in vitro assays, which was successively condensed with sorbicillinol to form acresorbicillinol C spontaneously. Finally, site-directed mutation revealed that Tyr525 was the key residue in the catalysis of the oxidation reaction and unlocking cage-like acresorbicillinol C production.
Collapse
Affiliation(s)
- Shiyuan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Chengbao Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Kumari A, Jain A, Shukla K, Patra R, Rana NK. A reusable polymer anchored pyridine mediated formal [4 + 1] annulation reaction for the diastereoselective synthesis of 2,3-dihydrobenzofurans. Org Biomol Chem 2023. [PMID: 37376919 DOI: 10.1039/d3ob00804e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
We have developed a highly stereoselective formal [4 + 1] annulation reaction to construct trans-2,3-dihydrobenzofurans utilising in situ generated supported pyridinium ylide. This approach has excellent substrate versatility and gram-scale synthesis capability. Moreover, the polymer-anchored pyridine has been recovered and reused multiple times. The product has been transformed into valuable molecules.
Collapse
Affiliation(s)
- Akanksha Kumari
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India.
| | - Anshul Jain
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India.
| | - Khyati Shukla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ranjan Patra
- Amity Institute of Click Chemistry Research & Studies, Amity University, Uttar Pradesh 201303, India
| | - Nirmal K Rana
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India.
| |
Collapse
|
12
|
Yang R, Feng J, Xiang H, Cheng B, Shao LD, Li YP, Wang H, Hu QF, Xiao WL, Matsuda Y, Wang WG. Ketoreductase Domain-Catalyzed Polyketide Chain Release in Fungal Alkyl Salicylaldehyde Biosynthesis. J Am Chem Soc 2023; 145:11293-11300. [PMID: 37172192 DOI: 10.1021/jacs.3c02011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Alkyl salicylaldehyde derivatives are polyketide natural products, which are widely distributed in fungi and exhibit great structural diversity. Their biosynthetic mechanisms have recently been intensively studied; however, how the polyketide synthases (PKSs) involved in the fungal alkyl salicylaldehyde biosyntheses release their products remained elusive. In this study, we discovered an orphan biosynthetic gene cluster of salicylaldehyde derivatives in the fungus Stachybotrys sp. g12. Intriguingly, the highly reducing PKS StrA, encoded by the gene cluster, performs a reductive polyketide chain release, although it lacks a C-terminal reductase domain, which is typically required for such a reductive release. Our study revealed that the chain release is achieved by the ketoreductase (KR) domain of StrA, which also conducts cannonical β-keto reductions during polyketide chain elongation. Furthermore, we found that the cupin domain-containing protein StrC plays a critical role in the aromatization reaction. Collectively, we have provided an unprecedented example of a KR domain-catalyzed polyketide chain release and a clearer image of how the salicylaldehyde scaffold is generated in fungi.
Collapse
Affiliation(s)
- Run Yang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Jian Feng
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Hao Xiang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Bin Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory and Yunnan Provincial Center of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, Yunnan, China
| | - Li-Dong Shao
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500 Yunnan, China
| | - Yan-Ping Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500 Yunnan, China
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qiu-Fen Hu
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory and Yunnan Provincial Center of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, Yunnan, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Wei-Guang Wang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| |
Collapse
|
13
|
Chávez R, Vaca I, García-Estrada C. Secondary Metabolites Produced by the Blue-Cheese Ripening Mold Penicillium roqueforti; Biosynthesis and Regulation Mechanisms. J Fungi (Basel) 2023; 9:jof9040459. [PMID: 37108913 PMCID: PMC10144355 DOI: 10.3390/jof9040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Filamentous fungi are an important source of natural products. The mold Penicillium roqueforti, which is well-known for being responsible for the characteristic texture, blue-green spots, and aroma of the so-called blue-veined cheeses (French Bleu, Roquefort, Gorgonzola, Stilton, Cabrales, and Valdeón, among others), is able to synthesize different secondary metabolites, including andrastins and mycophenolic acid, as well as several mycotoxins, such as Roquefortines C and D, PR-toxin and eremofortins, Isofumigaclavines A and B, festuclavine, and Annullatins D and F. This review provides a detailed description of the biosynthetic gene clusters and pathways of the main secondary metabolites produced by P. roqueforti, as well as an overview of the regulatory mechanisms controlling secondary metabolism in this filamentous fungus.
Collapse
Affiliation(s)
- Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Campus de Vegazana, Universidad de León, 24071 León, Spain
| |
Collapse
|