1
|
Cao J, Ding W, Zou G. Tetrabutylammonium Bromide (TBAB)-Promoted, Pd/Cu-Catalyzed Sonogashira Coupling of N-Tosyl Aryltriazenes. Org Lett 2024; 26:4576-4580. [PMID: 38775280 DOI: 10.1021/acs.orglett.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Sonogashira coupling of N-tosyl aryltriazenes is reported to offer arylalkynes in yields up to 92% with the aid of tetrabutylammonium bromide (TBAB) as a dual activator for both the palladium catalyst and aryltriazenes. Common functional groups could be well tolerated, although large electronic effects from alkynes were observed. TBAB-assisted oxidative addition of palladium(0) to aryltriazene instead of in situ formed arylhalide has been proposed to initiate the catalytic cycle.
Collapse
Affiliation(s)
- Jun Cao
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Wenbin Ding
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Gang Zou
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| |
Collapse
|
2
|
Podchorodecka P, Dziuk B, Szostak R, Szostak M, Bisz E. IPr* Oxa - a new class of sterically-hindered, wingtip-flexible N,C-chelating oxazole-donor N-heterocyclic carbene ligands. Dalton Trans 2023; 52:13608-13617. [PMID: 37698540 DOI: 10.1039/d3dt02255b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
N-heterocyclic carbenes (NHCs) have emerged as a major direction in ancillary ligand development for stabilization of reactive metal centers in inorganic and organometallic chemistry. In particular, wingtip-flexible NHCs have attracted significant attention due to their unique ability to provide a sterically-demanding environment for transition metals in various oxidation states. Herein, we report a new class of sterically-hindered, wingtip-flexible NHC ligands that feature N,C-chelating oxazole donors. These ligands are readily accessible through a modular arylation of oxazole derivatives. We report their synthesis and complete structural and electronic characterization. The evaluation of steric, electron-donating and π-accepting properties and coordination chemistry to Ag(I), Pd(II) and Rh(I) is described. Preliminary studies of catalytic activity in Ag, Pd and Rh-catalyzed coupling and hydrosilylation reactions are presented. This study establishes the fluxional behavior of a freely-rotatable oxazole unit, wherein the oxazolyl ring adjusts to the steric and electronic environment of the metal center. Considering the tremendous impact of sterically-hindered NHCs and their potential to stabilize reactive metals by N-chelation, we expect that this class of NHC ligands will be of broad interest in inorganic and organometallic chemistry.
Collapse
Affiliation(s)
- Pamela Podchorodecka
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.
| |
Collapse
|
3
|
Rahman M, Gao P, Zhao Q, Lalancette R, Szostak R, Szostak M. [Au(Np #)Cl]: Highly Reactive and Broadly Applicable Au(I)─NHC Catalysts for Alkyne π-Activation Reactions. Catal Sci Technol 2023; 13:5131-5139. [PMID: 38464950 PMCID: PMC10923537 DOI: 10.1039/d3cy00717k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cationic Au(I)─NHC (NHC = N-heterocyclic carbene) complexes have become an important class of catalysts for alkyne π-activation reactions in organic synthesis. In particular, these complexes are characterized by high stability of catalytic species engendered by strong σ-donation and metal backbonding. Herein, we report the synthesis and characterization of well-defined [Au(NHC)Cl] complexes featuring recently discovered IPr# family of ligands that hinge upon modular peralkylation of aniline. These ligands have been commercialized in collaboration with MilliporeSigma (IPr#: 915653; Np#: 915912; BIAN-IPr#: 916420). Evaluation of the [Au(NHC)Cl] complexes in a series of Au(I)─NHC-catalyzed π-functionalizations of alkynes, such as hydrocarboxylation, hydroamination and hydration, resulted in the identification of wingtip-flexible [Au(Np#)Cl] as a highly reactive and broadly applicable catalyst with the re-activity outperforming the classical [Au(IPr)Cl] and [Au(IPr*)Cl] complexes. The utility of this catalyst has been demonstrated in the direct late-stage derivatization of complex pharmaceuticals. Structural and computational studies were conducted to determine steric effects, frontier molecular orbitals and bond orders of this class of catalysts. Considering the attractive features of well-defined Au(I)─NHC complexes, we anticipate that this class of bulky and wingtip-flexible Au(I)─NHCs based on the modular peralkylated naphthylamine scaffold will find broad application in π-functionalization of alkynes in various areas of organic synthesis and catalysis.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
4
|
Peddiahgari Vasu GR, Motakatla Venkata KR, Kakarla RR, Ranganath KVS, Aminabhavi TM. Recent advances in sustainable N-heterocyclic carbene-Pd(II)-pyridine (PEPPSI) catalysts: A review. ENVIRONMENTAL RESEARCH 2023; 225:115515. [PMID: 36842701 DOI: 10.1016/j.envres.2023.115515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Various catalysts in homogeneous or heterogeneous catalysis deploy unconventional reaction pathways by lowering the activation energy (AE) barrier, controlling the selectivity, and creating environmental impact, thereby bringing about economic viability. Hence, the study of these methodologies is of immense interest. To develop a new chemistry, there is much scope for the invention of brilliant candidates that could effectively catalyze diverse reaction methodologies. The palladium-catalyzed reactions motivate interesting applications on various organic transformations under mild reaction conditions. Although phosphorous designed ligands or catalysts have been used, despite their expensiveness, sensitivity and other properties, there is the necessity of developing even better cross-coupling ligands or catalysts such as N-heterocyclic carbene (NHC)-based palladium complexes. These palladium-NHCs (Pd-NHC) are novel and universal nucleophilic entities that have come into light as the most successful class of catalysts in organometallic chemistry. In the same class, a specific category of palladium-NHCs such as palladium-pyridine enhanced pre-catalyst preparation by the stabilization initiation (palladium-PEPPSI) complexes, are emerging as versatile alternatives to phosphine containing palladium complexes for various cross-coupling reactions due to their excellent catalytic activity. Further to mention that NHCs are recently extensively used as ancillary ligands in organometallic chemistry, which includes industrial-related catalytic transformations due to strong σ-donors to metal centres. Apart from this, many NHC-metal complexes are the fascinating consideration in material science as probable metallo-pharmaceuticals. The current review offers a brief exploration of palladium-PEPPSI complexes over the past few years. Further, the synthesis of a variety of these types of catalysts, their applications in Suzuki-Miyaura, Buchwald-Hartwig, Sonogashira, Negishi couplings direct C2-arylation, O-C(O) cleavage, α-arylation/alkylation of carbonyl compounds and trans-amidation reactions via cross-coupling methodologies, which are covered. Additionally, reported recent developments on reusable heterogeneous PdPEPPSI complexes and their catalytic applications are being covered. Finally, the chiral Pd complexes and their asymmetric transformations are discussed.
Collapse
Affiliation(s)
| | | | - Raghava Reddy Kakarla
- School Chemical Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | | | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India; Karnatak University, Dharwad, 58003, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
5
|
Hu Y, Gao Y, Ye J, Ma Z, Feng J, Liu X, Lei P, Szostak M. Suzuki-Miyaura Cross-Coupling of 2-Pyridyl Trimethylammonium Salts by N-C Activation Catalyzed by Air- and Moisture-Stable Pd-NHC Precatalysts: Application to the Discovery of Agrochemicals. Org Lett 2023; 25:2975-2980. [PMID: 37079757 DOI: 10.1021/acs.orglett.3c00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
We report the first Suzuki-Miyaura cross-coupling of 2-pyridyl ammonium salts by highly selective N-C activation catalyzed by air- and moisture-stable Pd(II)-NHC (NHC = N-heterocyclic carbene) precatalysts. The use of well-defined and highly reactive [Pd(IPr)(3-CF3-An)Cl2] (An = aniline) or [Pd(IPr)(cin)Cl] (cin = cinnamyl) Pd(II)-NHC catalysts permits an exceptionally broad scope of the cross-coupling to furnish valuable biaryl and heterobiarylpyridines that are ubiquitous in medicinal chemistry and agrochemistry research. The overall process leverages the Chichibabin C-H amination of pyridines with N-C activation to enable an attractive strategy to the 2-pyridyl problem. The utility of the method to the discovery of potent agrochemicals is presented. Considering the importance of 2-pyridines and the versatility of N-C activation methods, we envision that this new C-H/N-C activation strategy will find broad application.
Collapse
Affiliation(s)
- Yuge Hu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jiuhui Ye
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Peng Lei
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Michal Szostak
- Department of Chemistry, Rutgers, The State University of New Jersey, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Yoshita A, Sakakibara Y, Murakami K. Synthesis of α-Substituted Alkenylammonium Salts through Suzuki–Miyaura and Sonogashira Coupling. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2023. [DOI: 10.1246/bcsj.20230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Aoi Yoshita
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1337, Japan
| | - Yota Sakakibara
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1337, Japan
| | - Kei Murakami
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1337, Japan
- JST-PRESTO, 7 Gobancho, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
7
|
Pankov RO, Prima DO, Kostyukovich AY, Minyaev ME, Ananikov VP. Synthesis and a combined experimental/theoretical structural study of a comprehensive set of Pd/NHC complexes with o-, m-, and p-halogen-substituted aryl groups (X = F, Cl, Br, CF 3). Dalton Trans 2023; 52:4122-4135. [PMID: 36883531 DOI: 10.1039/d2dt03665g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Pd/NHC complexes (NHCs - N-heterocyclic carbenes) with electron-withdrawing halogen groups were prepared by developing an optimized synthetic procedure to access imidazolium salts and the corresponding metal complexes. Structural X-ray analysis and computational studies have been carried out to evaluate the effect of halogen and CF3 substituents on the Pd-NHC bond and have provided insight into the possible electronic effects on the molecular structure. The introduction of electron-withdrawing substituents changes the ratio of σ-/π-contributions to the Pd-NHC bond but does not affect the Pd-NHC bond energy. Here, we report the first optimized synthetic approach to access a comprehensive range of o-, m-, and p-XC6H4-substituted NHC ligands, including incorporation into Pd complexes (X = F, Cl, Br, CF3). The catalytic activity of the obtained Pd/NHC complexes was compared in the Mizoroki-Heck reaction. For substitution with halogen atoms, the following relative trend was observed: X = Br > F > Cl, and for all halogen atoms, the catalytic activity changed in the following order: m-X, p-X > o-X. Evaluation of the relative catalytic activity showed a significant increase in the catalyst performance in the case of Br and CF3 substituents compared to the unsubstituted Pd/NHC complex.
Collapse
Affiliation(s)
- Roman O Pankov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Darya O Prima
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Alexander Yu Kostyukovich
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Mikhail E Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| |
Collapse
|
8
|
Liu K, Ding D, Xing W, Liu L, Zhang S, Meng Q, Chen T. Palladium-catalysed deaminative/decarboxylative cross-coupling of organoammonium salts with carboxylic acids. Org Biomol Chem 2023; 21:1384-1388. [PMID: 36652381 DOI: 10.1039/d2ob02251f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A palladium-catalysed carbon-carbon bond-forming reaction via deaminative/decarboxylative cross-coupling of organoammonium salts with carboxylic acids was developed. Under the reaction conditions, polyfluoroaromatic carboxylic acids, propiolic acids and α-cyano benzyl carboxylic acid reacted smoothly with benzyl ammonium salts to produce the corresponding carbon-carbon coupling products in good-to-excellent yields.
Collapse
Affiliation(s)
- Kuan Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Dexiang Ding
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Weitao Xing
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Shuo Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Qi Meng
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
9
|
Zhang J, Li X, Li T, Zhang G, Wan K, Ma Y, Fang R, Szostak R, Szostak M. Copper(I)–Thiazol-2-ylidenes: Highly Reactive N-Heterocyclic Carbenes for the Hydroboration of Terminal and Internal Alkynes. Ligand Development, Synthetic Utility, and Mechanistic Studies. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Xue Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Tao Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Gaopeng Zhang
- Kaili Catalyst & New Materials Co., Limited, Xi’an710299, China
| | - Kerou Wan
- Kaili Catalyst & New Materials Co., Limited, Xi’an710299, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Ran Fang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey07102, United States
| |
Collapse
|