1
|
Li X, Yang M, Wang S, Yuan X, Yin J, Shi D, Ma S, Zhang Q, Xiong T. Radical Arylboration of Unactivated Alkenes via Visible-Light Catalysis. Org Lett 2025; 27:4986-4991. [PMID: 40333359 DOI: 10.1021/acs.orglett.5c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
A photoinduced radical arylboration of unactivated alkenes with B2pin2 and aryl nitriles was developed, providing a mild and efficient approach to access useful β-aryl boronates in the absence of a transition-metal catalyst. This reaction undergoes a boron radical addition to alkene and a subsequent radical-radical coupling process. This approach showcases good functional group compatibility and provides a promising and complementary strategy to boron chemistry and traditional transition-metal-catalyzed coupling.
Collapse
Affiliation(s)
- Xiaoyu Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Menglin Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shucheng Ma
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Yang F, Dong Y, Wang J, Zhang N, Guo H, Zhang C. Enantioselective Copper-Catalyzed Three-Component Cascade Boronation-Dearomatization Reaction: Synthesis of Chiral Boron-Containing 1,4-Dihydropyridines. Org Lett 2025; 27:857-862. [PMID: 39791468 DOI: 10.1021/acs.orglett.4c04541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A three-component cascade boronation-dearomatization reaction of alkenes, a diboron compound, and a pyridinium salt is diclosed, affording chiral boron-containing 1,4-dihyropyridines in high yields (≤98%) and diastereoselectivity (≤10:1 dr), along with excellent enantioselectivity (typically >99% ee). The catalytic system performs efficiently at low catalyst loadings (1 mol %) and was tested with >50 examples, including some biologically active molecules.
Collapse
Affiliation(s)
- Fazhou Yang
- Department of Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yujie Dong
- Department of Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - JinBao Wang
- Department of Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Nianci Zhang
- Department of Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Cheng Zhang
- Department of Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
3
|
Zhu Y, Feng Z, Li W, Wang J, Ju G, Wang C. Coordination-Assisted Ni-Catalyzed Regio- and Enantioselective 1,2-Borylalkylation of Unactivated Alkenes. Org Lett 2024; 26:10622-10627. [PMID: 39630100 DOI: 10.1021/acs.orglett.4c03791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Herein we successfully utilize various directing groups to achieve a ligand-enabled nickel-catalyzed 1,2-borylalkylation of unactivated alkenes. A β-amino alcohol was employed as the ligand for non-asymmetric 1,2-borylalkylation of unactivated alkenes, while a bulky chiral diamine ligand was used to achieve the asymmetric 1,2-borylalkylation of allyl amides.
Collapse
Affiliation(s)
- Yuqin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Zhetai Feng
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421000, People's Republic of China
| | - Wenyi Li
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421000, People's Republic of China
| | - Jiaxin Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Guodong Ju
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Chao Wang
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421000, People's Republic of China
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
4
|
Wu X, Li S, Chen L, Ma S, Ma B, Song L, Qian D. Stereoselective Construction of Multifunctional C-Glycosides Enabled by Nickel-Catalyzed Tandem Borylation/Glycosylation. J Am Chem Soc 2024; 146:22413-22423. [PMID: 39096292 DOI: 10.1021/jacs.4c05485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Stereochemically pure saccharides have indispensable roles in fields ranging from medicinal chemistry to materials science and organic synthesis. However, the development of a simple, stereoselective, and efficient glycosylation protocol to access α- and β-C-glycosides (particularly 2-deoxy entities) remains a persistent challenge. Existing studies have primarily focused on C1 modification of carbohydrates and transformation of glycosyl radical precursors. Here, we innovate by harnessing the in situ generated glycosyl-Ni species to achieve one-pot borylation and glycosylation in a cascade manner, which is enabled by an earth-abundant nickel-catalyzed carboboration of readily accessible glycals without any ligand. This work reveals the potential for the development of a modular and multifunctional glycosylation platform to facilitate the simultaneous introduction of C-C and C-B bonds at the stereogenic center of saccharides, a largely unexploited research area. Preliminary experimental and computational studies indicate that the endocyclic O and the C3 group play important roles in stereoseclectively forging glycosidic bonds. As a result, a diverse range of C-R (R = alkyl, aryl, and alkenyl) and 2-deoxygenated glycosides bearing modifiable boron groups could be rapidly made with excellent stereocontrol and exhibit remarkable functional group tolerance. The synthetic potential is underscored in the late-stage glycosylation of natural products and commercial drugs as well as the facile preparation of various rare sugars, bioactive conjugates, and key intermediates to prorocentin, phomonol, and aspergillide A.
Collapse
Affiliation(s)
- Xiaomei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Kowloon, 999077 Hong Kong SAR, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Liqin Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Siwei Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Bin Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| |
Collapse
|
5
|
Lyu MY, Jacobo SA, Brown MK. Diverse Synthesis of C-Glycosides by Stereoselective Ni-Catalyzed Carboboration of Glycals. J Am Chem Soc 2024; 146:18866-18872. [PMID: 38967118 PMCID: PMC11733800 DOI: 10.1021/jacs.4c06246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
C-Glycosides are important structures that are common to natural products and pharmaceutical agents. Established methods for their synthesis involve the reaction of an activated anomeric carbon. In this study, we report a conceptually new approach that involves the stereoselective Ni-catalyzed carboboration of glycals. In these reactions, not only is a C-C bond formed at the anomeric carbon, but a synthetically useful C-B bond is also installed. Upon C-B oxidation, differentially protected C-glycosides to be formed. In addition, stereospecific manipulation of the C-B bond leads to diverse C-glycosides. Finally, we report the application of this method in the synthesis of established C-glycosides, such as C-glycosyl amino acids, as well as a strategy to make all possible diastereomers at C1 and C2.
Collapse
Affiliation(s)
- Mao-Yun Lyu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Samuel A Jacobo
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Ajmeera S, Golagani D, Akondi SM. Ferrocene catalyzed carbohydroxylation of alkenes using H 2O and cycloketone oxime esters. Org Biomol Chem 2023; 21:8482-8487. [PMID: 37853953 DOI: 10.1039/d3ob01481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A cyanoalkyl-hydroxylation reaction of aryl alkenes has been successfully devised, employing ferrocene as a catalyst for the addition of a cycloketone oxime ester and H2O across the double bond of the alkene. This environmentally friendly approach employs a solvent mixture consisting of water and demonstrates redox neutrality, along with exceptional regio- and chemoselectivity, leading to the formation of diverse distal hydroxy-nitrile compounds. Moreover, this research presents noteworthy contributions in terms of late-stage functionalization of complex molecules and offers valuable insights into the mechanistic aspects of the reaction.
Collapse
Affiliation(s)
- Sriram Ajmeera
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durga Golagani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Wang Y, Lin C, Zhang Z, Shen L, Zou B. Directed Nickel-Catalyzed Selective Arylhydroxylation of Unactivated Alkenes under Air. Org Lett 2023; 25:2172-2177. [PMID: 36946921 DOI: 10.1021/acs.orglett.3c00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
An expeditious and novel nickel-catalyzed selective arylhydroxylation of unactivated alkenes with arylboronic acids was developed. This protocol is compatible with β,γ- and γ,δ-alkene amides, including traditionally challenging internal alkenes, to provide important β-arylethylalcohol scaffolds. The free hydroxyl group in the final product could be smoothly further transformed into other functional groups. Control experiments indicated that the oxygen atom of the hydroxyl group in the product is derived from the oxygen in the air.
Collapse
Affiliation(s)
- Yihua Wang
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Cong Lin
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Zongxu Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Boya Zou
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
8
|
Duan M, Wang Y, Zhu S. Nickel-catalyzed asymmetric 1,2-alkynylboration of vinylarenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|