1
|
Rastogi A, Shaw AK, Kumari S, Kant R, Koley D. Ruthenium(II)-Catalyzed C-H Activation/Annulation of 5-Phenyl-pyrroline-2-carboxylates with Alkynes: Synthesis of 2,3-Diphenylspiro-[indene-1,2'pyrrolidine]carboxylate Derivatives. Org Lett 2025; 27:5281-5286. [PMID: 40340351 DOI: 10.1021/acs.orglett.5c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
While saturated nitrogen heterocycles are privileged scaffolds, their streamlined catalytic synthesis with unsymmetrical substitution patterns remains a daunting challenge. Herein, we report the ruthenium(II)-catalyzed synthesis of spiro[indene-proline] derivatives via C-H activation/annulation of 5-phenyl-pyrroline-2-carboxylates with alkynes. The protocol utilized imine coordination, resulting in high reaction yields with a wide range of functional group tolerance, scalability, and scaffold diversity. This annulation was successful even with various biologically active pharmacophores. The reaction featured a reversible C-H metalation step and suggested the possibility of a base-assisted internal electrophilic substitution pathway.
Collapse
Affiliation(s)
- Anushka Rastogi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhishek Kumar Shaw
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suruchi Kumari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Rathod NB, Patel RN, Patel SD, Patel DM, Sonawane MA, Thakur DG, Ghosh SC. Cobalt-Catalyzed Regioselective C8-H Sulfoxamination of 1-Naphthylamine Derivatives with NH-Sulfoximines. J Org Chem 2024; 89:18436-18444. [PMID: 39556517 DOI: 10.1021/acs.joc.4c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
A simple cobalt-catalyzed, picolinamide-directed C8-H sulfoxamination of 1-naphthalamides with NH-sulfoximines has been developed. This cross-dehydrogenative C-H/N-H coupling reaction offers a facile route to N-arylated sulfoximines, exhibiting high yields, a broad substrate scope, and excellent functional group tolerance and scalability.
Collapse
Affiliation(s)
- Nileshkumar B Rathod
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raj N Patel
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachinkumar D Patel
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dharmik M Patel
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh A Sonawane
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dinesh Gopichand Thakur
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Testen Ž, Jereb M. Strategies for oxidative synthesis of N-triflyl sulfoximines. RSC Adv 2024; 14:30836-30843. [PMID: 39346519 PMCID: PMC11427871 DOI: 10.1039/d4ra04992f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The oxidation of various structurally different N-trifluoromethylthio sulfoximines was investigated using different oxidizing agents and conditions. Mono- and disubstituted phenyl methyl and phenyl cyclopropyl N-trifluoromethylthio sulfoximines were oxidized with NaOCl·5H2O in water, while sterically hindered substrates bearing bulkier alkyl chains or two phenyl rings required the addition of MeCN to the reaction mixture. Chloro-, bromo-, and cyano-substituted substrates, as well as substrates bearing the benzyl groups, required a completely different approach using m-CPBA in DCM. Each method was tested on a gram-scale, with almost no difference in yield or reaction profile. The methods were also tested on N-p-tolylthio sulfoximine where successful oxidation to the corresponding sulfone derivative was observed. Finally, the N-triflyl sulfoximines acquired in the oxidations were examined in terms of stability and reactivity in Suzuki-Miyaura and Sonogashira coupling reactions, as well as many others. The selective mono- and dinitration of 4-methoxyphenyl N-triflyl sulfoximine was demonstrated by using nitric and sulfuric acid. N-triflyl sulfoximines were found to be stable in concentrated aqueous NaOH and HCl solutions and at elevated temperatures.
Collapse
Affiliation(s)
- Žan Testen
- University of Ljubljana, Faculty of Chemistry and Chemical Technology Večna pot 113 1000 Ljubljana Slovenia mailto:
| | - Marjan Jereb
- University of Ljubljana, Faculty of Chemistry and Chemical Technology Večna pot 113 1000 Ljubljana Slovenia mailto:
| |
Collapse
|
4
|
Li Y, Meng Z, Zhu X, Hao XQ, Song MP. Cu(II)-Mediated Sulfonylation of (Hetero)arenes with TosMIC Using Monodentate Directing Groups. J Org Chem 2024; 89:3894-3906. [PMID: 38385785 DOI: 10.1021/acs.joc.3c02730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Monodentate chelation-assisted direct ortho-C-H sulfonylation of (hetero)arenes using TosMIC as the novel sulfonylating reagent has been developed. A broad range of substrates, including indolines, indoles, 2-phenylpyridines, and others were well tolerated to afford the corresponding products in moderate to good yields. Mechanistic studies revealed that the sulfonyl radical might be involved. Inspired by the above discovery, preliminary para-C-H sulfonylation of naphthalene substrate was also successfully realized. The current protocol featured with cheap metal catalysis, good functional group compatibility, and operational convenience.
Collapse
Affiliation(s)
- Yigao Li
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Zhuang Meng
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| |
Collapse
|
5
|
Niu RH, Zhang J, Zhao RY, Luo QJ, Li JH, Sun B. Cobalt(III)-Catalyzed Directed C-7 Selective C-H Alkynylation of Indolines with Bromoalkynes. Org Lett 2023; 25:5411-5415. [PMID: 37458331 DOI: 10.1021/acs.orglett.3c01584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A cobalt(III)-catalyzed directed C-7 alkynylation of indolines with easily accessible bromoalkynes has been developed. The reaction has a broad substrate scope with excellent yields and represents a powerful route to the synthesis of 7-alkynyl-substituted indolines. In addition, the reaction can be extended to the coupling of N-aryl 7-azaindoles, highlighting the synthetic practicability of the strategy.
Collapse
Affiliation(s)
- Rui-Han Niu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jing Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ru-Yuan Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Quan-Jian Luo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Sun
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|