1
|
Zhao J, Ren D, Xia J, Liu X, Liu X, Wang X, Xie F. Enantioselective Pd- and Cu-Catalyzed Hydrofunctionalization of Methylenecyclopropanes via a Distal C-C Bond Cleavage. Org Lett 2025; 27:1089-1094. [PMID: 39875176 DOI: 10.1021/acs.orglett.4c03872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The enantioselective ring-opening reactions of methylenecyclopropanes (MCPs) involving C-C bond activation via oxidative addition of transition metals have been rarely reported. Here, we disclose a Pd/Cu-catalyzed enantio- and regioselective coupling between cyclic imino esters and MCPs to produce α-allylated 2H-pyrrole derivatives. In this reaction, azomethine ylide formed by a chiral copper catalyst with ketimine ester would serve as a nucleophile to react with activated MCPs via palladium catalysis. This bimetallic catalyst system exhibited a broad substrate scope and high regio- and enantioselectivities.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Deyue Ren
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jintao Xia
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430075, China
| | - Xiaodan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xinheng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaoyue Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Fang Xie
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
2
|
Ning C, Yu Z, Shi M, Wei Y. Palladium-catalyzed selective C-C bond cleavage of keto-vinylidenecyclopropanes: construction of structurally rich dihydrofurans and tetrahydrofurans. Chem Sci 2024; 15:9192-9200. [PMID: 38903235 PMCID: PMC11186342 DOI: 10.1039/d4sc02536a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Palladium-catalyzed selective cleavage of the distal C-C bond and proximal C-C bond of keto-vinylidenecyclopropanes by altering the sterically bulky phosphine ligands has been realized. The proximal C-C bond cleavage can be achieved by using dtbpf as a phosphine ligand, affording bicyclic products containing dihydrofuran skeletons in good yields along with broad substrate scope. In proximal C-C bond cleavage reactions, the eight-membered cyclic palladium intermediate plays a key role in the reaction. The [3 + 2] cycloaddition of keto-vinylidenecyclopropanes through the distal C-C bond cleavage can be effectively accomplished with t BuXPhos as a phosphine ligand and ZnCl2 as an additive, delivering bicyclic products containing tetrahydrofuran skeletons in good yields. The further transformation of these bicyclic products has been demonstrated, and the reaction mechanisms of two different C-C bond cleavage reactions have been investigated by control experiments and DFT calculations.
Collapse
Affiliation(s)
- Chao Ning
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology Meilong Road No.130 Shanghai 200237 China
| | - Ziqi Yu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology Meilong Road No.130 Shanghai 200237 China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology Meilong Road No.130 Shanghai 200237 China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
3
|
Zhou J, Meng L, Yang Z, Wang JJ. Enantio- and Regioselective Cascade Hydroboration of Methylenecyclopropanes for Facile Access to Chiral 1,3- and 1,4-Bis(boronates). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400096. [PMID: 38477439 DOI: 10.1002/advs.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Chiral 1, n-bis(boronate) plays a crucial role in organic synthesis and medicinal chemistry. However, their catalytic and asymmetric synthesis has long posed a challenge in terms of operability and accessibility from readily available substrates. The recent discovery of the C═C bond formation through β-C elimination of methylenecyclopropanes (MCP) has provided an exciting opportunity to enhance molecular complexity. In this study, the catalyzed asymmetric cascade hydroboration of MCP is developed. By employing different ligands, various homoallylic boronate intermediate are obtained through the hydroboration ring opening process. Subsequently, the cascade hydroboration with HBpin or B2pin2 resulted in the synthesis of enantioenriched chiral 1,3- and 1,4-bis(boronates) in high yields, accompanied by excellent chemo- and enantioselectivities. The selective transformation of these two distinct C─B bonds also demonstrated their application potential in organic synthesis.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Ling Meng
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Ziyi Yang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Jun Joelle Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| |
Collapse
|
4
|
Chen ZC, Ouyang Q, Du W, Chen YC. Palladium(0) π-Lewis Base Catalysis: Concept and Development. J Am Chem Soc 2024; 146:6422-6437. [PMID: 38426858 DOI: 10.1021/jacs.3c14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The development of a new catalytic strategy plays a vital role in modern organic chemistry since it permits bond formation in an unprecedented and more efficient manner. Although the application of preformed metal complexes as π-base-activated reagents have enabled diverse transformations elegantly, the concept and strategy by directly utilizing transition metals as efficient π-Lewis base catalysts remain underdeveloped, especially in the field of asymmetric catalysis. Here, we outline our perspective on the discovery of palladium(0) as an efficient π-Lewis base catalyst, which is capable of increasing the highest occupied molecular orbital (HOMO) energy of both electron-neutral and electron-deficient 1,3-dienes and 1,3-enynes upon flexible η2-complexes formed in situ and resultant π-backdonation. Thus, fruitful carbon-carbon-forming reactions with diverse electrophiles can be achieved enantioselectively in a vinylogous addition pattern, which is conceptually different from the classical oxidative cyclization mechanism. Emphasis will be given to the concept and mechanism elucidation, catalytic features, and reaction design together with perspective on the further development of this emerging field.
Collapse
Affiliation(s)
- Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
5
|
Wang Y, Feng J, Li EQ, Jia Z, Loh TP. Recent advances in ligand-enabled palladium-catalyzed divergent synthesis. Org Biomol Chem 2023; 22:37-54. [PMID: 38050418 DOI: 10.1039/d3ob01679j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Developing efficient and straightforward strategies to rapidly construct structurally distinct and diverse organic molecules is one of the most fundamental tasks in organic synthesis, drug discovery and materials science. In recent years, divergent synthesis of organic functional molecules from the same starting materials has attracted significant attention and has been recognized as an efficient and powerful strategy. To achieve this objective, the proper adjustment of reaction conditions, such as catalysts, solvents, ligands, etc., is required. In this review, we summarized the recent efforts in chemo-, regio- and stereodivergent reactions involving acyclic and cyclic systems catalyzed by palladium complexes. Meanwhile, the reaction types, including carbonylative reactions, coupling reactions and cycloaddition reactions, as well as the probable mechanism have also been highlighted in detail.
Collapse
Affiliation(s)
- Yue Wang
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Jinzan Feng
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| |
Collapse
|
6
|
Zhou J, Meng L, Lin S, Cai B, Wang J. Palladium-catalyzed Enantio- and Regioselective Ring-Opening Hydrophosphinylation of Methylenecyclopropanes. Angew Chem Int Ed Engl 2023:e202303727. [PMID: 37186017 DOI: 10.1002/anie.202303727] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Transition metal-catalyzed hydrofunctionalization of methylenecyclopropanes (MCP) has presented a considerable challenge due to the difficult manipulation of regioselectivity and complicated reaction patterns. Herein, we report a straightforward Pd-catalyzed ring-opening hydrophosphinylation reaction of MCP via highly selective C-C bond cleavage. This allows for rapid and efficient access to a wide range of chiral allylic phosphine oxides in good yields and high enantioselectivities. Additionally, density functional theory (DFT) calculations were performed to elucidate the reaction mechanism and the origin of product enantioselectivity.
Collapse
Affiliation(s)
- Jian Zhou
- Hong Kong Baptist University, Department of Chemistry, HONG KONG
| | - Ling Meng
- Hong Kong Baptist University, Department of Chemistry, HONG KONG
| | - Shujuan Lin
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, Department of Chemistry, CHINA
| | - Baohua Cai
- Southern University of Science and Technology, Department of Chemistry, CHINA
| | - Jun Wang
- Hong Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 000000, Hong Kong, HONG KONG
| |
Collapse
|
7
|
Liu XL, Lin HZ, Tan LQ, Peng JB. Palladium- and Brønsted acid-catalyzed enantio-, site- and E/ Z-selective addition of alkylidenecyclopropanes with imines. Chem Sci 2023; 14:2348-2352. [PMID: 36873841 PMCID: PMC9977444 DOI: 10.1039/d2sc05674g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/01/2023] [Indexed: 02/06/2023] Open
Abstract
Transition-metal catalyzed functionalization of ACPs has been widely investigated in cycloaddition and 1,3-difunctionalization reactions. However, the transition metal catalyzed nucleophilic reactions of ACPs have rarely been reported. In this article, an enantio-, site- and E/Z-selective addition of ACPs with imines for the synthesis of dienyl substituted amines has been developed via palladium- and Brønsted acid co-catalysis. A range of synthetically valuable dienyl substituted amines were effectively prepared with good to excellent yields and excellent enantio- and E/Z-selectivities.
Collapse
Affiliation(s)
- Xin-Lian Liu
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Han-Ze Lin
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Lu-Qi Tan
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| |
Collapse
|
8
|
Hu Y, Huang JY, Yan RJ, Chen ZC, Ouyang Q, Du W, Chen YC. Diastereodivergent cis- and trans-fused [4 + 2] annulations of cyclic 1,3-dienes and 1-azadienes via ligand-controlled palladium catalysis. Chem Sci 2023; 14:1896-1901. [PMID: 36819872 PMCID: PMC9931049 DOI: 10.1039/d2sc06813c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Despite the blossoming of reports of diastereodivergent synthesis over the past years, switchable control of the stereochemistry of the bridgehead atoms of the fused frameworks has been significantly underdeveloped. Here we disclose the ability of Pd0-π-Lewis base catalysis to finely reverse the concerted inverse-electron-demand aza-Diels-Alder cycloaddition reaction between cyclic 1,3-dienes and aurone-derived 1-azadienes. In contrast, the in situ-formed HOMO-energy-increased Pd0-η2-complexes of cyclic 1,3-dienes underwent a cascade vinylogous Michael addition/allylic amination process with 1-azadienes. Moreover, judicious selection of chiral ligands allowed for switchable diastereodivergent [4 + 2] annulations to be accomplished, resulting in the construction of both cis- and trans-fused tetrahydropyridine architectures in high yields with moderate to excellent stereoselectivity levels. A variety of acyclic 1,3-dienes and 1-heterodienes were also applied, and furnished a structural diversity of enantioenriched frameworks.
Collapse
Affiliation(s)
- Yuan Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Jin-Yu Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ru-Jie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical UniversityShapingbaChongqing 400038China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609.,College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| |
Collapse
|