1
|
Liu YS, Wang ZQ, Zhang YP, Mu WY, Wang WM, Zhao JZ. A novel Mn@MOF-303 as a catalyst for the highly efficient S-formylation of benzyl thiols with CO 2. Chem Commun (Camb) 2025; 61:4678-4681. [PMID: 40026082 DOI: 10.1039/d5cc00195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
A novel and efficient chemical approach for the S-formylation of benzylthiols with CO2 has been achieved in the presence of Mn@MOF-303 as the catalyst at room temperature. As a heterogeneous catalyst, Mn@MOF-303 exhibited efficient catalytic activity and excellent cycling performance. Furthermore, the reaction mechanism was further analyzed by DFT calculations.
Collapse
Affiliation(s)
- Ya-Shuai Liu
- Basic Sciences Department, Shanxi Agricultural University, Jinzhong, 030801, P. R. China.
| | - Zhi-Qiang Wang
- Basic Sciences Department, Shanxi Agricultural University, Jinzhong, 030801, P. R. China.
| | - Yong-Po Zhang
- Basic Sciences Department, Shanxi Agricultural University, Jinzhong, 030801, P. R. China.
| | - Wei-Yu Mu
- Basic Sciences Department, Shanxi Agricultural University, Jinzhong, 030801, P. R. China.
| | - Wen-Min Wang
- School of Science, Kaili University, Kaili, 556011, P. R. China.
| | - Jin-Zhong Zhao
- Basic Sciences Department, Shanxi Agricultural University, Jinzhong, 030801, P. R. China.
| |
Collapse
|
2
|
Bhat MUS, Ganie MA, Kumar S, Rizvi MA, Raheem S, Shah BA. Visible-Light-Mediated Synthesis of Thioesters Using Thiocarboxylic Acid as the Dual Reagent. J Org Chem 2024; 89:4607-4618. [PMID: 38509669 DOI: 10.1021/acs.joc.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We have developed a visible-light-driven method for thioester synthesis that relies on the unique dual role of thiobenzoic acids as one-electron reducing agents and reactants leading to the formation of sulfur radical species. This synthetic process offers a wide scope, accommodating various thioacid and thiol substrates without the need for a photocatalyst.
Collapse
Affiliation(s)
- Muneer-Ul-Shafi Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sourav Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
3
|
Zhu XW, Ye H, Pan YY, Wu Y, Wu XX. Pd-Catalyzed Cascade Cyclization/Thiocarbonylation with Thioformates: Synthesis of Thioester-Functionalized Oxindoles. J Org Chem 2024; 89:3471-3480. [PMID: 38350101 DOI: 10.1021/acs.joc.3c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
A Pd-catalyzed thiocarbonylative cyclization of N-(o-iodoaryl)acrylamides with easily accessible thioformates has been developed. The reaction has a wide substrate scope with good yields and represents a powerful route to the synthesis of thioester-functionalized oxindoles. Both S-aryl and alkyl thioformates as the thioester sources were well tolerated. The active Pd-CO intermediate may play an important role in the transformation process.
Collapse
Affiliation(s)
- Xi-Wei Zhu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Hao Ye
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Yi-Yun Pan
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Yanan Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Xin-Xing Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
4
|
Liu XY, Fang JL, Rao W, Shen D, Yang ZY, Wang SY. Overcoming Radical Stability Order via DABCO-Triggered Desulfurization: Visible-Light-Promoted 1,2,4-Trifunctionalization of Butenyl Benzothiazole Sulfone with Thiosulfonate. J Org Chem 2024; 89:474-483. [PMID: 38096480 DOI: 10.1021/acs.joc.3c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A radical 1,2,4-trifunctional reaction of thiosulfonate to unactivated olefin is achieved by a migration strategy under mild conditions. In this reaction, the more unstable primary free radicals are in situ generated after the migration of heteroaryl groups in the presence of DABCO. This trifunctionalization of unactivated olefins involves two C-S bond formations and one C-C bond formation.
Collapse
Affiliation(s)
- Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jia-Lin Fang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Daopeng Shen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhao-Ying Yang
- Soochow College, Soochow University, Suzhou 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Chen W, Sheng D, Jiang YF, Zhu WC, Rao W, Shen SS, Yang ZY, Wang SY. Nickel-Catalyzed Acid Chlorides with Tetrasulfides for the Synthesis of Thioesters and Acyl Disulfides. J Org Chem 2023; 88:15871-15880. [PMID: 37882877 DOI: 10.1021/acs.joc.3c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Herein, we report a novel method for the synthesis of thioesters and acyl disulfides via nickel-catalyzed reductive cross-electrophile coupling of acid chlorides with tetrasulfides. This approach for the synthesis of thioesters and acyl disulfides is convenient and practical under mild reaction conditions, relying on easy availability. In addition, a wide range of thioesters and acyl disulfides were obtained in medium to good yields with good functional group tolerance. Moreover, thioesters and acyl disulfides can also be prepared at the gram scale, indicating that they have certain potential for industrial application.
Collapse
Affiliation(s)
- Wang Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Daopeng Sheng
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou, 215009, PR China
| | - Zhao-Ying Yang
- Soochow College, Soochow University, Suzhou, 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Xie Q, Wei A, Liu Z, Yan Q, Zhang X, Gao B. Nickel-Catalyzed Metathesis between Carboxylic Acids and Thioesters: A Direct Access to Thioesters. Org Lett 2023; 25:7035-7039. [PMID: 37712637 DOI: 10.1021/acs.orglett.3c02664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
We describe a unique strategy for generating thioesters from carboxylic acids and thioesters. This transformation features operational simplicity and high step-economy, wherein the -SR moiety of thioesters was smoothly transferred to carboxylic acid from thioacetates as the starting material. Various substrates with different levels of electronic nature were all applicable to this reaction, furnishing thioesters in moderate to outstanding yields. According to the preliminary mechanistic studies, the anhydride intermediates may be involved in the present reaction.
Collapse
Affiliation(s)
- Qiumin Xie
- School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Anhui Wei
- School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Ziding Liu
- School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Qian Yan
- School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xiuli Zhang
- School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Bao Gao
- School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
7
|
Chai TJ, Chiou XS, Lin NX, Kuo YT, Lin CK. In situ generation of acyloxyphosphoniums for mild and efficient synthesis of thioesters. Org Biomol Chem 2023; 21:7541-7545. [PMID: 37676265 DOI: 10.1039/d3ob01318a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
We present a novel approach for in situ generation of acyloxyphosphoniums by premixing iodobenzene dicarboxylates and triphenylphosphine, resulting in efficient thioester synthesis (up to 100% yield). Stable solid iodobenzene dicarboxylates, achieved via carboxylate exchange, serve as hypervalent iodine precursors. The resulting acyloxyphosphoniums allow convenient one-pot thioester synthesis under mild conditions. Our method demonstrates facile acyloxyphosphonium production from iodobenzene dicarboxylates and Ph3P, enabling diverse thioester preparation. ESI-MS analysis confirms acyloxyphosphonium ion formation, pivotal in acylation. This strategy holds potential for combinatorial thioester synthesis and broader nucleophile modification applications.
Collapse
Affiliation(s)
- Te-Jung Chai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Xin-Shun Chiou
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Nian-Xuan Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yu-Tsen Kuo
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Cheng-Kun Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|