1
|
Yang C, Shen L, Xie Y, Li J, Jiang H, Zeng W. Rh(III)-Catalyzed Indole Dearomative 1,2-Alkoxyl Shift Rearrangement. Org Lett 2025; 27:4052-4056. [PMID: 40201984 DOI: 10.1021/acs.orglett.5c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
A Rh(III)-catalyzed dearomative C3 alkoxylation of indoles via cascade C(sp2)-H activation and 1,2-alkoxyl shift rearrangement has been developed. This method provides an efficient strategy to rapidly assemble 3-alkoxyindolin-2-one scaffolds using alcohols as alkoxyl sources. Mechanistic studies indicate that indolyl C2 alkoxylation followed by Ag(I)/Cu(II)-mediated 1,2-alkoxyl migration is involved in this transformation.
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lixing Shen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ying Xie
- School of Chemical and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Jianzhang Li
- School of Chemical and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
2
|
Nallamilli T, Munakala A, Dhanavath R, Mahendran H, Chegondi R. Pd(II)-catalyzed cyclization of alkyne-tethered malononitriles via nitrile insertion. Chem Commun (Camb) 2025; 61:2957-2960. [PMID: 39840469 DOI: 10.1039/d4cc05973e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Herein, we have developed a Pd(II)-catalyzed cyclization of prochiral alkyne-tethered malononitriles to access five-membered carbocycles having a nitrile-containing all-carbon quaternary center. The reaction pathway involves a trans-acetoxypalladation, nitrile group insertions into the carbon-palladium bond and sequential deacetylation followed by N-acetylation. Initial studies on asymmetric cyclization were also performed with chiral Pyox ligands.
Collapse
Affiliation(s)
- Tarun Nallamilli
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anandarao Munakala
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
| | - Ramulu Dhanavath
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
| | - Hariharan Mahendran
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Tian J, Li X, Shou T, Li W, Lv H. Enantioselective Synthesis of 3-Hydroxy-2-Oxindoles via Ni-Catalyzed Asymmetric Addition of Aromatic Bromides to α-Ketoamides. Chemistry 2024; 30:e202403622. [PMID: 39403858 DOI: 10.1002/chem.202403622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Indexed: 11/09/2024]
Abstract
Nickel-catalyzed asymmetric intramolecular addition of aryl halides to α-ketoamides has been achieved to afford chiral 3-substituted-3-hydroxy-2-oxindoles in excellent yields and high enantioselectivities (up to 99 % yield and 98 % ee), which provides efficient access to valuable molecules containing 3-hydroxy-2-oxindole core. The gram-scale reaction proved the potential utility of the methodology.
Collapse
Affiliation(s)
- Jiangyan Tian
- State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuening Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Shou
- State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wendian Li
- State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui Lv
- State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Huang S, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Arylation of Common Ketones. J Am Chem Soc 2024; 146:12895-12900. [PMID: 38696162 DOI: 10.1021/jacs.4c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A nickel complex of chiral bisoxazolines catalyzed the stereoselective reductive arylation of ketones in high enantioselectivity. A range of common acyclic and cyclic ketones reacted without the aid of directing groups. Mechanistic studies using isolated complex of a chiral bis(oxazoline) (L)Ni(Ar)Br revealed that Mn reduction was not needed, while Lewis acidic titanium alkoxides were critical to ketone insertion.
Collapse
Affiliation(s)
- Shuai Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
5
|
Isbrandt ES, Chapple DE, Tu NTP, Dimakos V, Beardall AMM, Boyle PD, Rowley CN, Blacquiere JM, Newman SG. Controlling Reactivity and Selectivity in the Mizoroki-Heck Reaction: High Throughput Evaluation of 1,5-Diaza-3,7-diphosphacyclooctane Ligands. J Am Chem Soc 2024; 146:5650-5660. [PMID: 38359357 DOI: 10.1021/jacs.3c14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We report a high throughput evaluation of the Mizoroki-Heck reaction of diverse olefin coupling partners. Comparison of different ligands revealed the 1,5-diaza-3,7-diphosphacyclooctane (P2N2) scaffold to be more broadly applicable than common "gold standard" ligands, demonstrating that this family of readily accessible diphosphines has unrecognized potential in organic synthesis. In particular, two structurally related P2N2 ligands were identified to enable the regiodivergent arylation of styrenes. By simply altering the phosphorus substituent from a phenyl to tert-butyl group, both the linear and branched Mizoroki-Heck products can be obtained in high regioisomeric ratios. Experimental and computational mechanistic studies were performed to further probe the origin of selectivity, which suggests that both ligands coordinate to the metal in a similar manner but that rigid positioning of the phosphorus substituent forces contact with the incoming olefin in a π-π interaction (for P-Ph ligands) or with steric clash (for P-tBu ligands), dictating the regiocontrol.
Collapse
Affiliation(s)
- Eric S Isbrandt
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Devon E Chapple
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Nguyen Thien Phuc Tu
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Victoria Dimakos
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Anne Marie M Beardall
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Paul D Boyle
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Christopher N Rowley
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Johanna M Blacquiere
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
6
|
Jiang SY, Shi J, Wang W, Sun YZ, Wu W, Song JR, Yang X, Hao GF, Pan WD, Ren H. Copper-Catalyzed Selective Electron Transfer Enables Switchable Divergent Synthesis of 3-Functionalized Oxindoles. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Shu-Yun Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Wei Wang
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Yan-Zheng Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Xiaoyan Yang
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Wei-Dong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| |
Collapse
|