1
|
Liu D, Xiao F, Ebel B, Oppel IM, Patureau FW. Visible-Light-Mediated Radical α-C(sp 3)─H gem-Difluoroallylation of Amides with Trifluoromethyl Alkenes via Halogen Atom Transfer and 1,5-Hydrogen Atom Transfer. Org Lett 2025; 27:2377-2382. [PMID: 40042138 DOI: 10.1021/acs.orglett.5c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Direct gem-difluoroallylation at the α-carbonyl position is a challenging process by conventional methods. Herein we report the photocatalytic radical α-C(sp3)─H gem-difluoroallylation of amides with trifluoromethyl alkenes to access the target compounds with good yields and functional group tolerance. The mild and effective conditions allow gem-difluoroalkene motifs as carbonyl bioisosteres incorporated concisely to some complex molecules, including gemfibrozil and estrone derivatives, presenting great potential for late-stage functionalization of drugs, natural products, and bioactive intermediates. Mechanistic investigations suggest a radical pathway combining XAT and 1,5-HAT.
Collapse
|
2
|
Chen Y, Mao X, Li MM, Ding W. Visible Light Photoredox-Catalyzed Radical Defluorinative Arylation of α-Trifluoromethyl Alkenes with Aryl Chlorides. J Org Chem 2025; 90:3391-3403. [PMID: 40011037 DOI: 10.1021/acs.joc.4c03088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Photocatalytic defluorinative cross-coupling reactions of α-trifluoromethyl alkenes with diverse radical precursors have emerged as a powerful strategy for the synthesis of gem-difluoroalkenes. However, the radical defluorinative arylation is relatively rare due to the limitation of aryl radical precursors. Aryl chlorides, as ideal candidates, remain a large challenge in this reaction because of the chemical inertness of the C(sp2)-Cl bond and their high negative reduction potential. Herein, we report a radical defluorinative arylation of α-trifluoromethyl alkenes with aryl chlorides as aryl radical precursors through a consecutive photoinduced electron transfer (ConPET) process. This protocol features mild conditions, operational simplicity, wide substrate scope, and functional group tolerance, producing a diverse range of benzylic gem-difluoroalkenes in moderate to good yields. The scale-up reaction and the valuable transformations of products demonstrate the great potential applications of this approach.
Collapse
Affiliation(s)
- Yumeng Chen
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xudong Mao
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao-Miao Li
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wei Ding
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
3
|
Zhao H, Cuomo VD, Tian W, Romano C, Procter DJ. Light-assisted functionalization of aryl radicals towards metal-free cross-coupling. Nat Rev Chem 2025; 9:61-80. [PMID: 39548311 DOI: 10.1038/s41570-024-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
The many synthetic possibilities that arise when using radical intermediates, in place of their polar counterparts, make contemporary radical chemistry research an exhilarating field. The introduction of photocatalysis has helped tame aryl radicals, leading to a resurgence of interest in their chemistry, and an expansion of viable coupling partners and attainable transformations. These methods are more selective and safer than classical approaches, and they utilize new radical precursors. Given the importance of sustainability in current organic synthesis and our interest in light-assisted metal-free transformations, this Review focuses on recent advances in the use of aryl radicals in photoinduced cross-couplings that do not rely on metals for the crucial bond-forming event, and it is structured according to the key step that the aryl radicals engage in.
Collapse
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - Wei Tian
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Ciro Romano
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - David J Procter
- Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Timmann S, Feng Z, Alcarazo M. Recent Applications of Sulfonium Salts in Synthesis and Catalysis. Chemistry 2024; 30:e202402768. [PMID: 39282878 DOI: 10.1002/chem.202402768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/06/2024]
Abstract
The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Sun K, Ge C, Chen X, Yu B, Qu L, Yu B. Energy-transfer-enabled photocatalytic transformations of aryl thianthrenium salts. Nat Commun 2024; 15:9693. [PMID: 39516492 PMCID: PMC11549398 DOI: 10.1038/s41467-024-54079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Aryl thianthrenium salts are valuable in photocatalysis but traditionally require external electron donors for activation. This study introduces an energy transfer (EnT) strategy for the activation of aryl thianthrenium salts using 2,3,4,5,6-penta(carbazol-9-yl)benzonitrile (5CzBN) as a metal-free photocatalyst, eliminating the need for external donors. Utilizing this EnT approach, we achieve C-H deuteration of arenes under visible light with CDCl3 as a deuterium source to synthesize various deuterated aromatic compounds, including important natural products and pharmaceuticals. Additionally, this strategy enables diverse functionalizations including borylation, arylation, cyanation, and selenylation, enhancing the applicability of aryl sulfonium salts in environmentally friendly photocatalysis.
Collapse
Affiliation(s)
- Kai Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Ge
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaolan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Liu J, Feng Z, Li H, Yu Z, Wang H, Tang B. Efficient late-stage synthesis of quaternary phosphonium salts from organothianthrenium salts via photocatalysis. Chem Commun (Camb) 2024. [PMID: 39073349 DOI: 10.1039/d4cc02515f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Quaternary phosphonium salts (QPS) are significant structural motifs in drugs, materials, and catalysts. Here, a photoactivated approach for the selective late-stage synthesis of QPS utilizing organothianthrenium salts and tertiary phosphines is presented with high yields and broad functional group compatibility. Additionally, the synthetic utility of this protocol is demonstrated by in situ generation of QPS via C-H functionalization and its fluorescence confocal imaging of mitochondrial localization in cells.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Zhaoyu Feng
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Hanxiang Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
| | - Zhengze Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
| | - Hongyu Wang
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Bo Tang
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
7
|
Ren M, Yu S, Li X, Yuan W, Lu J, Xiong Y, Liu H, Wang J, Wei J. Synthesis of gem-Difluorohomoallyl Amines via a Transition-Metal-Free Defluorinative Alkylation of Benzyl Amines with Trifluoromethyl Alkenes. J Org Chem 2024; 89:8342-8356. [PMID: 38819657 DOI: 10.1021/acs.joc.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A mild and transition-metal-free defluorinative alkylation of benzyl amines with trifluoromethyl alkenes is reported. The features of this protocol are easy-to-obtain starting materials, a wide range of substrates, and functional group tolerance as well as high atom economy, thus offering a strategy to access a variety of gem-difluorohomoallyl amines, which are extensively distributed in pharmaceuticals and bioactive agents, with excellent chemoselectivity. The primary products can be further transformed to a diversity of 2-fluorinated pyrroline compounds.
Collapse
Affiliation(s)
- Man Ren
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengjiao Yu
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xuefeng Li
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenlong Yuan
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ji Lu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Xiong
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hongliang Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 265500, China
| | - Jun Wang
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
8
|
Dong XX, Liu JG, Zhang HX, Zhang B. A Practical and Modular Method for Direct C-H Functionalization of the BODIPY Core via Thianthrenium Salts. Chemistry 2024:e202401929. [PMID: 38818768 DOI: 10.1002/chem.202401929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Direct structural modification of small-molecule fluorophores represents a straightforward and appealing strategy for accessing new fluorescent dyes with desired functionalities. We report herein a general and efficient visible-light-mediated method for the direct C-H functionalization of BODIPY, an important fluorescent chromophore, using readily accessible and bench-stable aryl and alkenylthianthrenium salts. This practical approach operates at room temperature with extraordinary site-selectivity, providing a step-economical means to construct various valuable aryl- and alkenyl-substituted BODIPY dyes. Remarkably, this protocol encompasses a broad substrate scope and excellent functional-group tolerance, and allows for the modular synthesis of sophisticated symmetrical and asymmetrical disubstituted BODIPYs by simply employing different combinations of thianthrenium salts. Moreover, the late-stage BODIPY modification of complex drug molecules further highlights the potential of this novel methodology in the synthesis of fluorophore-drug conjugates.
Collapse
Affiliation(s)
- Xin-Xin Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing-Guo Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao-Xiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
9
|
Kaplaneris N, Akdeniz M, Fillols M, Arrighi F, Raymenants F, Sanil G, Gryko DT, Noël T. Photocatalytic Functionalization of Dehydroalanine-Derived Peptides in Batch and Flow. Angew Chem Int Ed Engl 2024; 63:e202403271. [PMID: 38497510 DOI: 10.1002/anie.202403271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Unnatural amino acids, and their synthesis by the late-stage functionalization (LSF) of peptides, play a crucial role in areas such as drug design and discovery. Historically, the LSF of biomolecules has predominantly utilized traditional synthetic methodologies that exploit nucleophilic residues, such as cysteine, lysine or tyrosine. Herein, we present a photocatalytic hydroarylation process targeting the electrophilic residue dehydroalanine (Dha). This residue possesses an α,β-unsaturated moiety and can be combined with various arylthianthrenium salts, both in batch and flow reactors. Notably, the flow setup proved instrumental for efficient scale-up, paving the way for the synthesis of unnatural amino acids and peptides in substantial quantities. Our photocatalytic approach, being inherently mild, permits the diversification of peptides even when they contain sensitive functional groups. The readily available arylthianthrenium salts facilitate the seamless integration of Dha-containing peptides with a wide range of arenes, drug blueprints, and natural products, culminating in the creation of unconventional phenylalanine derivatives. The synergistic effect of the high functional group tolerance and the modular characteristic of the aryl electrophile enables efficient peptide conjugation and ligation in both batch and flow conditions.
Collapse
Affiliation(s)
- Nikolaos Kaplaneris
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Merve Akdeniz
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Méritxell Fillols
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Francesca Arrighi
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Fabian Raymenants
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Gana Sanil
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Chen B, Chen Q, Liu Y, Chen J, Zhou X, Wang H, Yan Q, Wang W, Cai Z, Chen FE. Visible-Light-Induced Defluorinative α-C(sp 3)-H Alkylation for the Synthesis of gem-Difluoroallylated α-Trifluoromethylamines. Org Lett 2023; 25:9124-9129. [PMID: 37976410 DOI: 10.1021/acs.orglett.3c03523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Herein, we describe a novel and efficient photoredox catalytic Cα radical addition/defluoroalkylation coupling reaction between α-trifluoromethyl alkenes and N-trifluoroethyl hydroxylamine. A series of gem-difluoroallylated α-trifluoromethylamines were synthesized by the Cα radical addition enabled by a 1,2-H shift of the in situ-generated N-trifluoroethyl radical. Notably, this protocol is distinguished by its mild conditions, easy operation, and excellent functional group tolerability.
Collapse
Affiliation(s)
- Bingran Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qinlin Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yang Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jinxiu Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xi Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Zeyu Cai
- Hubei Duorui Pharmaceutical Co., Ltd. Wuhan 430205, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
11
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|