1
|
Wang W, Xiao JA, Zheng L, Liang WJ, Yang L, Huang XX, Lin C, Chen K, Su W, Yang H. Structure-Dependent, Switchable Alder-Ene/[2π + 2σ] Cycloadditions of Vinyl Bicyclo[1.1.0]butanes with α-Ketoesters Enabled by Palladium Catalysis. Org Lett 2024; 26:10645-10650. [PMID: 39628401 DOI: 10.1021/acs.orglett.4c04251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A structure-dependent, palladium-catalyzed switchable alder-ene/[2π + 2σ] cycloaddition of VBCBs with α-ketoesters has been reported. A variety of cyclobutenes and 2-oxabicyclo[2.1.1]hexanes have been efficiently achieved in good to excellent yields through strain-release-driven alder-ene reactions and [2π + 2σ] cycloadditions, respectively. The potential of this method is illustrated by the scale-up reaction and diverse postsynthetic transformations of the obtained cyclic scaffolds. Additionally, the reaction mechanism and origins of the chemoselectivity have been probed by computational studies.
Collapse
Affiliation(s)
- Wei Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Lan Zheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Wen-Jie Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Liu Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Xiao-Xiang Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Chenxiang Lin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
2
|
Priyanka C, Madhu D, Gangadhar PS, Giribabu L, Punna N. Cross-conjugated vinylogous annulation of π-CF 3-allyl Pd-complexes with 4-methyl-3-trifluoroacetyl-quinolones. Chem Commun (Camb) 2024; 60:12233-12236. [PMID: 39360402 DOI: 10.1039/d4cc03953j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Herein, we disclose the hitherto unknown cross-conjugated vinylogous annulation of π-CF3-allyl Pd complexes with 4-methyl-3-trifluoroacetyl-quinolones to access phenanthridones. The CF3 group in the Pd-π-allyl complex is key for exclusive γ-regioselectivity and further annulation. The solvent switch orchestrates the dihydro-phenanthridones (CH3CN) and hydroxy-phenanthridones (DMF) in good yields, and also showed excellent optoelectronic properties.
Collapse
Affiliation(s)
- Chiliveru Priyanka
- Fluoro-Agro chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Desagoni Madhu
- Fluoro-Agro chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Palivela Siva Gangadhar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Lingamallu Giribabu
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Nagender Punna
- Fluoro-Agro chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
3
|
Gayen P, Sar S, Ghorai P. Stereodivergent Synthesis of Spiroaminals via Chiral Bifunctional Hydrogen Bonding Organocatalysis. Angew Chem Int Ed Engl 2024; 63:e202404106. [PMID: 38563755 DOI: 10.1002/anie.202404106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Spiroaminals represent novel structural motifs prevalent in diverse natural products and biologically active molecules. Achieving their enantioselective synthesis is a highly desirable and challenging task in synthetic endeavors due to their intricate molecular frameworks. Herein, we accomplished the first stereodivergent construction of spiroaminals using chiral bifunctional organocatalyzed intramolecular 1,2-addition followed by an oxa-Michael addition cascade in a high atom and step economical pathway. A proper modulation of the cinchona-derived squaramide catalysts efficiently provided access to all the possible stereoisomers with high yield, diastereoselectivity, and excellent enantioselectivity while displaying a broad substrate tolerance. Additionally, we validated the scalability of the reaction and demonstrated the synthesis of variable spiroaminal scaffolds, confirming the viability of our protocol.
Collapse
Affiliation(s)
- Prasenjit Gayen
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| | - Suman Sar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| |
Collapse
|
4
|
Wang X, Yang C, Yue D, Xu M, Duan S, Shen X. Iodine-Catalyzed Cascade Annulation of 4-Hydroxycoumarins with Aurones: Access to Spirocyclic Benzofuran-Furocoumarins. Molecules 2024; 29:1701. [PMID: 38675521 PMCID: PMC11052457 DOI: 10.3390/molecules29081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
An attractive approach for the preparation of spirocyclic benzofuran-furocoumarins has been developed through iodine-catalyzed cascade annulation of 4-hydroxycoumarins with aurones. The reaction involves Michael addition, iodination, and intramolecular nucleophilic substitution in a one-step process, and offers an efficient method for easy access to a series of valuable spirocyclic benzofuran-furocoumarins in good yields (up to 99%) with excellent stereoselectivity. Moreover, this unprecedented protocol provides several advantages, including readily available materials, an environmentally benign catalyst, a broad substrate scope, and a simple procedure.
Collapse
Affiliation(s)
- Xuequan Wang
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Changhui Yang
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Dan Yue
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Mingde Xu
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Suyue Duan
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
5
|
Zhang X, Dai HY, Liu WC, Zeng R, Dai Z, Wang YP, Li JL, Li QZ, Han B. Base-Promoted Formal (3 + 2) Cycloaddition of α-Halohydroxamates with Electron-Deficient Alkenyl-iminoindolines To Synthesize Spiro-indolinepyrrolidinones. J Org Chem 2023; 88:14619-14633. [PMID: 37789599 DOI: 10.1021/acs.joc.3c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Construction of pyrrolidinyl-spiroindoles with easily available starting materials has attracted considerable attention from the synthesis community and is in great demand. Here, we describe a base-promoted formal (3 + 2) cycloaddition of α-halohydroxamates with alkenyl-iminoindolines. The present methodology features mild reaction conditions and a broad substrate scope with up to 99% yield and excellent diastereoselectivity. The versatility of this approach is demonstrated through valuable synthetic transformations. Preliminary mechanistic studies shed light on the mechanism of this cycloaddition process.
Collapse
Affiliation(s)
- Xiang Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Hai-Yu Dai
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Wan-Cong Liu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Rong Zeng
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Zhen Dai
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Ya-Peng Wang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Jun-Long Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Qing-Zhu Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Bo Han
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
6
|
Ma ZC, Wei LW, Huang Y. Stereodivergent Access to [6.7]-Fused N-Heterocycles Bearing 1,3-Nonadjacent Stereogenic Centers by Pd-Catalyzed [4 + 2] Annulations. Org Lett 2023; 25:1661-1666. [PMID: 36862582 DOI: 10.1021/acs.orglett.3c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
We describe a highly efficient stereodivergent [4 + 2] annulation reaction of vinyl benzoxazinaones and seven-membered cyclic N-sulfonyl aldimines for the synthesis of a wide array of N-heterocycles with 1,3-nonadjacent stereogenic centers via palladium catalysis. The polarity of solvents was found to play a key role in the switch of diastereoselectivity. Furthermore, good enantioselectivities of these reactions were achieved by the employment of commercially available Wingphos as the chiral ligand.
Collapse
Affiliation(s)
- Zhan-Cai Ma
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong Univeristy, Xi'an 710061, China
| | - Lin-Wen Wei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong Univeristy, Xi'an 710061, China
| | - Yuan Huang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong Univeristy, Xi'an 710061, China
| |
Collapse
|