1
|
Li F, Yang D, Qu H, Zhu M, Zheng S. Phosphine-catalyzed reaction of cyclopropenones with water: divergent synthesis of highly functionalized γ-butenolides, trisubstituted α,β-unsaturated acids and anhydride. Org Biomol Chem 2025. [PMID: 40391541 DOI: 10.1039/d5ob00306g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The reaction between cyclopropenones and water catalyzed by different phosphines has been thoroughly investigated. Under the catalysis of trimethylphosphine, highly functionalized γ-butenolides were successfully synthesized from the simple starting material, cyclopropenones, and water in 35%-81% yields with excellent diastereoselectivities. Under the catalysis of triphenylphosphine, cyclopropenones were transferred to trisubstituted α,β-unsaturated acids with sufficient water in 78%-99% yields, while α,β-unsaturated acid anhydrides were obtained with trace water.
Collapse
Affiliation(s)
- Fujuan Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Danna Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Hongyan Qu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Mingqi Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Suqing Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
| |
Collapse
|
2
|
Bawari D, Malahov I, Dobrovetsky R. Sb-to-P Metathesis: A Direct Route to Structurally Constrained, Cationic P III Compound. Angew Chem Int Ed Engl 2025; 64:e202419772. [PMID: 39570789 DOI: 10.1002/anie.202419772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Indexed: 12/06/2024]
Abstract
Structurally constrained, cationic PIII compound [LP][SbCl4] with an OCO pincer-type ligand (L) having a central carbene donor was directly synthesized via an Sb-to-P metathesis reaction between PCl3 and LSb-Cl. [LP][SbCl4] was isolated and its reactivity with small molecules (ROH and RNH2) was studied, showing that [SbCl4]- is not an innocent counter anion, but an active participant in these reactions. When the [SbCl4]- was replaced with the [CB11H12]- ([Cb]-) anion, the reactions were redirected to [LP]+ cation only. The reactions with alcohols and amines led to the equilibrium between the products of the formal E-H (E=O, N) bond oxidative addition to the P-center and products of the P-center/ligand-assisted bond activation. Remarkably, [LP]+ activated the PhO-H and PhN(H)-H bonds in a reversible, thermoneutral fashion.
Collapse
Affiliation(s)
- Deependra Bawari
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Irina Malahov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| |
Collapse
|
3
|
Qian J, Zhou L, Wang Y, Zhou X, Tong X. Transition from Kwon [4+2]- to [3+2]-cycloaddition enabled by AgF-assisted phosphine catalysis. Nat Commun 2024; 15:6995. [PMID: 39143094 PMCID: PMC11324788 DOI: 10.1038/s41467-024-51295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Phosphine catalysis generally relies on the potential of carbanion-phosphonium zwitterions that are generated via nucleophilic addition of phosphine catalyst to electrophilic reactants. Consequently, structural modification of zwitterions using distinct electrophilic reactants has emerged as a prominent strategy to enhance catalysis diversity. Herein, we present an alternative strategy that utilizes AgF additive to expand phosphine catalysis. We find that AgF can readily transform the canonical carbanion-phosphonium zwitterion into silver enolate-fluorophosphorane intermediate, eventually furnishing a P(III)/P(V) catalytic cycle. This strategy has been successfully applied to the phosphine-catalyzed reaction of 2-substituted allenoate and imine, resulting in the transition from Kwon [4 + 2] cycloaddition to [3 + 2] cycloaddition. This [3 + 2] cycloaddition features remarkable diastereoselectivity, high yield, and broad substrate scope. Experimental and computational studies have validated the proposed mechanism. Given the prevalence of carbanion-phosphonium zwitterions in phosphine catalysis, this AgF-assisted strategy is believed to hold significant potential for advancing P(III)/P(V) catalysis.
Collapse
Affiliation(s)
- Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Lijin Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Yuyi Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Xiaoyu Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
4
|
Bonfante S, Lorber C, Lynam JM, Simonneau A, Slattery JM. Addition to "Metallomimetic C-F Activation Catalysis by Simple Phosphines". J Am Chem Soc 2024; 146. [PMID: 38606948 PMCID: PMC11046476 DOI: 10.1021/jacs.4c04291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 04/13/2024]
|
5
|
Qian J, Zhou L, Peng R, Tong X. (3+2) Annulation of 4-Acetoxy Allenoate with Aldimine Enabled by AgF-Assisted P(III)/P(V) Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315188. [PMID: 37985927 DOI: 10.1002/anie.202315188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A phosphine-catalyzed (3+2) annulation of 4-acetoxy allenoate and aldimine with the assistance of AgF is described. The success of this reaction hinges on the metathesis between the enolate-phosphonium zwitterion and AgF, leading to a key intermediate comprising of silver enolate and a fluorophosphorane P(V)-moiety. The former is able to undergo a Mannich reaction with aldimine, whereas the latter initiates a cascade sequence of AcO-elimination/aza-addition, thus furnishing the P(III)/P(V) catalysis. By taking advantage of the silver enolate, a preliminary attempt at an asymmetric variant was conducted with the combination of an achiral phosphine catalyst and a chiral bis(oxazolinyl)pyridine ligand (PyBox), giving moderate enantioselectivity.
Collapse
Affiliation(s)
- Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Lijin Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Rouxuan Peng
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| |
Collapse
|
6
|
Bhat MUS, Ganie MA, Shah BA. Metal-Free Tunable 1,2-Difunctionalization of Terminal Alkynes: Synthesis of β-Substituted α,β-Unsaturated Ketones. Chemistry 2023; 29:e202302294. [PMID: 37691543 DOI: 10.1002/chem.202302294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
A metal-free tunable 1,2-difunctionalization of the terminal alkynes showcasing a tandem installation of C-C and C-S bonds has been developed. The key enabling factor for the approach is the use of acetic acid as an acyl source to synthesize β-substituted α,β-unsaturated ketones. The reaction at room temperature leads to the regioselective acylation at the terminal carbon of alkynes, whereas at -78 °C, the acylation occurs at the more substituted carbon.
Collapse
Affiliation(s)
- Muneer-Ul-Shafi Bhat
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 20002, India
| | - Majid Ahmad Ganie
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 20002, India
| | - Bhahwal Ali Shah
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 20002, India
| |
Collapse
|
7
|
Sang X, Mo Y, Li S, Liu X, Cao W, Feng X. Bimetallic tandem catalysis-enabled enantioselective cycloisomerization/carbonyl-ene reaction for construction of 5-oxazoylmethyl α-silyl alcohol. Chem Sci 2023; 14:8315-8320. [PMID: 37564412 PMCID: PMC10411629 DOI: 10.1039/d3sc01048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
A bimetallic tandem catalysis-enabled enantioselective cycloisomerization/carbonyl-ene reaction was developed. The reaction proceeded well with a broad range of N-propargylamides and acylsilanes, affording the target chiral 5-oxazoylmethyl α-silyl alcohols in up to 95% yield and 99% ee under mild conditions. Importantly, this facile protocol was available for the late-stage modification of several bioactive molecules. Based on the mechanistic study and control experiments, a possible catalytic cycle and transition state are proposed to elucidate the reaction process and enantioinduction.
Collapse
Affiliation(s)
- Xinpeng Sang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Yuhao Mo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Shiya Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|