1
|
Hurtado R, Lou L, Klerner L, Inaloo ID, Heineman FW, Harder S, Schmid G, Dorta R. Diarylformamides as a Safe Reservoir and Room Temperature Source of Ultra-Pure CO in the Context of a 'Green' rWGS Reaction. CHEMSUSCHEM 2024; 17:e202400308. [PMID: 38875288 PMCID: PMC11587692 DOI: 10.1002/cssc.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Diphenylformamide 1 and bisformamide 9 are shown to be safe reservoirs and sources of CO. Their perfectly selective decarbonylations are achieved in solution at room temperature with potassium and cesium diarylamide catalysts. 1 is obtained in excellent yields directly from triethylammonium formate, which may be the product of CO2 scrubbing with NEt3 and catalytic hydrogenation. 1 thus represents a key intermediate in a low-temperature rWGS reaction sequence. Moreover, solvent-free decarbonylations of 1 may be run either in the melt at 70 °C or with 9 even in the solid state at 88 °C with improved atom economy. These simple and practical transition-metal-free decarbonylations afford ultra-pure (i. e. dry and solvent-free) CO at moderate temperatures and the diarylamines byproducts are recycled as pure compounds. In the absence of catalysts, diarylformamides 1 and 9 are long-term stable at >200 °C. DFT-calculations indicate a reaction pathway with a rate-determining deprotonation of Ph2NC(O)H and barrier-free CO elimination from Ph2NC(O)-.
Collapse
Affiliation(s)
- Royel Hurtado
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Lisha Lou
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Lukas Klerner
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Iman Dindarloo Inaloo
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Frank W. Heineman
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Sjoerd Harder
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Günter Schmid
- Siemens Energy Global GmbH & Co. KG, New Energy Business – Technology & ProductsFreyeslebenstraße 191058ErlangenGermany
| | - Romano Dorta
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| |
Collapse
|
2
|
Liu L, Li J, Chen Y, Chen S, Xiao F, Deng GJ. Acid-Promoted Amination of Cyclohexenone for the Divergent Synthesis of p-Aminophenols and Tertiary Amines. J Org Chem 2024; 89:13826-13835. [PMID: 39295166 DOI: 10.1021/acs.joc.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A tunable method for the selective preparation of p-aminophenol and tertiary amines from a secondary amine and cyclohexenone has been described. Nonaromatic cyclohexenones were used as an aryl source. The desired tertiary amine products were generated when using I2 as the catalyst. This approach yields single-site-selective p-aminophenol without using I2, and the 18O labeling experiments demonstrated that hydroxyl oxygen originates from O2.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jun Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ya Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shanping Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Luk J, Goodfellow AS, More ND, Bühl M, Kumar A. Exploiting decarbonylation and dehydrogenation of formamides for the synthesis of ureas, polyureas, and poly(urea-urethanes). Chem Sci 2024:d4sc03948c. [PMID: 39309078 PMCID: PMC11411599 DOI: 10.1039/d4sc03948c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Urea derivatives, polyureas, and poly(urea-urethanes) are materials of great interest. However, their current methods of synthesis involve toxic feedstocks - isocyanate and phosgene gas. There is significant interest in developing alternative methodologies for their synthesis from safer feedstocks. We report here new methods for the synthesis of urea derivatives, polyureas, and poly(urea-urethane) using a ruthenium pincer catalyst. In this approach, urea derivatives and polyureas are synthesized from the self-coupling of formamides and diformamides, respectively, whereas poly(urea-urethanes) are synthesized from the coupling of diformamides and diols. CO and H2 gases are eliminated in all these processes. Decarbonylation of formamides using such organometallic catalysts has not been reported before and therefore mechanistic insights have been provided using experiments and DFT computation to shed light on pathways of these processes.
Collapse
Affiliation(s)
- James Luk
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| | - Nachiket Deepak More
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| | - Amit Kumar
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| |
Collapse
|
4
|
Zhang J, Chen Z, Chen M, Zhou Q, Zhou R, Wang W, Shao Y, Zhang F. Lanthanide/B(C 6F 5) 3-Promoted Hydroboration Reduction of Indoles and Quinolines with Pinacolborane. J Org Chem 2024. [PMID: 38178689 DOI: 10.1021/acs.joc.3c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We have developed a lanthanide/B(C6F5)3-promoted hydroboration reduction of indoles and quinolines with pinacolborane (HBpin). This reaction provides streamlined access to a range of nitrogen-containing compounds in moderate to excellent yields. Large-scale synthesis and further transformations to bioactive compounds indicate that the method has potential practical applications. Preliminary mechanistic studies suggest that amine additives promote the formation of indole-borane intermediates, and the lanthanide/B(C6F5)3-promoted hydroboration reduction proceeds via hydroboration of indole-borane intermediates with HBpin and in situ-formed BH3 species, followed by the protodeborylation process.
Collapse
Affiliation(s)
- Jianping Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ziyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Mingxin Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qi Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Rongrong Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wenli Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
5
|
Sportelli G, Grando G, Bevilacqua M, Filippini G, Melchionna M, Fornasiero P. Graphitic Carbon Nitride as Photocatalyst for the Direct Formylation of Anilines. Chemistry 2023; 29:e202301718. [PMID: 37439718 DOI: 10.1002/chem.202301718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
The use of graphitic carbon nitride (g-CN) for the photocatalytic radical formylation of anilines, which represents a more sustainable and attractive alternative to the currently used approaches, is reported herein. Our operationally simple method occurs under mild conditions, employing air as an oxidant. In particular, the chemistry is driven by the ability of g-CN to reach an electronically excited state upon visible-light absorption, which has a suitable potential energy to trigger the formation of reactive α-amino radical species from anilines. Mechanistic investigations also proved the key role of the g-CN to form reactive superoxide radicals from O2 via single electron transfer. Importantly, this photocatalytic transformation provides a variety of functionalized formamides (15 examples, up to 89 % yield).
Collapse
Affiliation(s)
- Giuseppe Sportelli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Gaia Grando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Manuela Bevilacqua
- Institute of Chemistry of Organometallic Compounds (ICCOM-CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
- Center for Energy, Environment and, Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Center for Energy, Environment and, Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Center for Energy, Environment and, Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
6
|
McLuskie A, Brodie CN, Tricarico M, Gao C, Peters G, Naden AB, Mackay CL, Tan JC, Kumar A. Manganese catalysed dehydrogenative synthesis of polyureas from diformamide and diamines. Catal Sci Technol 2023; 13:3551-3557. [PMID: 37342794 PMCID: PMC10278093 DOI: 10.1039/d3cy00284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
We report here the synthesis of polyureas from the dehydrogenative coupling of diamines and diformamides. The reaction is catalysed by a manganese pincer complex and releases H2 gas as the only by-product making the process atom-economic and sustainable. The reported method is greener in comparison to the current state-of-the-art production routes that involve diisocyanate and phosgene feedstock. We also report here the physical, morphological, and mechanical properties of synthesized polyureas. Based on our mechanistic studies, we suggest that the reaction proceeds via isocyanate intermediates formed by the manganese catalysed dehydrogenation of formamides.
Collapse
Affiliation(s)
- Angus McLuskie
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Claire N Brodie
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Michele Tricarico
- Department of Engineering Science, University of Oxford Parks Road Oxford OX13PJ UK
| | - Chang Gao
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Gavin Peters
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Aaron B Naden
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | | | - Jin-Chong Tan
- Department of Engineering Science, University of Oxford Parks Road Oxford OX13PJ UK
| | - Amit Kumar
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| |
Collapse
|
7
|
Zhang J, Wang Y, Zhou X. Lanthanide-catalyzed deamidative cyclization of secondary amides and ynones through tandem C-H and C-N activation. Chem Commun (Camb) 2023; 59:3253-3256. [PMID: 36815667 DOI: 10.1039/d3cc00216k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The tandem inert α-C-H and C-N bond activation of amides represents a highly valuable but challenging transformation in organic synthesis. Herein, a simple rare earth metal amido complex has been shown to catalyse unprecedented cyclization of amides with ynones to form trisubstituted 2-pyrones. This protocol significantly enables the selective merger of inert α-C-H and C-N bond activations of amides and indicates a particular role of rare earth catalysts in enhancing the selectivity for the α-C-H bond of amides in the presence of N-H bonds.
Collapse
Affiliation(s)
- Junxi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Yitu Wang
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Xigeng Zhou
- Department of Chemistry, Fudan University, Shanghai, 200438, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai, 200032, China
| |
Collapse
|
8
|
Wang S, Wang Y, Hu K, Wang K, Zhou X. Controllable carbonyl-assisted C(sp 3)–C(sp 3) bond reduction and reorganization. Org Chem Front 2023. [DOI: 10.1039/d2qo01981g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Unprecedentedly preferential reduction of unstrained C(sp3)–C(sp3) bond over ketone, hydrogenative [2+2+2]-cycloreversion of 2,4-diacylcyclohexanols, and cyclizative degradation of poly(vinylketone) have been achieved by organolanthanide catalysis.
Collapse
Affiliation(s)
- Shengke Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yitu Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Kun Hu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Kai Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xigeng Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai 200032, China
| |
Collapse
|