1
|
Cao TZ, Nie CJ, Li J, Liu MD, Wang ZT, Kong YF, Wang X, Sun YY, Li JH, Zhu YP. Photocatalytically switchable chemoselective difluoramidation of olefins for the synthesis of diversified difluoro-γ-lactams. Chem Commun (Camb) 2025; 61:5150-5153. [PMID: 40067146 DOI: 10.1039/d5cc00661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Herein, we describe a visible light-promoted intramolecular difluoramidation reaction of olefins. By precisely adjusting the reaction conditions, the difficult-to-control olefin radical addition process was effectively controlled. Heck-type coupling of olefins and hydrofluoroamidation of olefins, as well as difunctionalization of olefins, were successfully achieved with good selectivity.
Collapse
Affiliation(s)
- Tian-Zheng Cao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Cai-Jian Nie
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Jing Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Ming-Dong Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Zi-Tong Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Yi-Fei Kong
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Xin Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Yuan-Yuan Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yan-Ping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| |
Collapse
|
2
|
Gao Y, Wang M, Sun J, Zhao XJ, He Y. Electrochemical-induced solvent-tuned selective C(sp 3)-H bond activation towards the synthesis of C3-functionalized chromone derivatives. Chem Commun (Camb) 2024; 60:5050-5053. [PMID: 38634308 DOI: 10.1039/d4cc00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
An unprecedented solvent-tuned electrochemical method for selective C(sp3)-H bond activation towards the synthesis of C3 functionalized chromone derivatives has been developed. This electrosynthesis protocol provides an efficient and green way to access various C3-functionalized chromones by avoiding traditionally employed transition metals and high temperatures. The swappable chemoselectivity was controlled mainly by altering the solvent and the current. A plausible reaction mechanism has been proposed with the help of radical capture and cyclic voltammetry experiments.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Mingxu Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Jingxian Sun
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
3
|
Wu HZ, Teng ZS, Ke YX, Zou Y, Gao P, Li Y, Zhou CH, Zang ZL. Electrochemical trifluoroalkylation/annulation for the synthesis of CF 3-functionalized tetrahydroquinolines and dihydroquinolinones. Org Biomol Chem 2023; 21:8579-8583. [PMID: 37853839 DOI: 10.1039/d3ob00987d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Tuning the electronic structure of protecting groups on the nitrogen atom of substrates has emerged as an effective strategy to achieve the tandem trifluoromethylation/C(sp2)-H annulation using Langlois' reagent as the CF3 source for the electrochemical synthesis of functionalized tetrahydroquinolines and dihydroquinolinones.
Collapse
Affiliation(s)
- Hao-Zeng Wu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Shan Teng
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yu-Xin Ke
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yu Zou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ping Gao
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yue Li
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
4
|
Kim HS, Jang E, Kim HI, Hari Babu M, Lee JY, Kim SK, Sim J. Chemical Glycosylation with p-Methoxyphenyl (PMP) Glycosides via Oxidative Activation. Org Lett 2023; 25:3471-3475. [PMID: 37140886 DOI: 10.1021/acs.orglett.3c01050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A novel persulfate-mediated oxidative glycosylation system using p-methoxyphenyl (PMP) glycosides as bench-stable glycosyl donors is developed. This study shows that both K2S2O8 as an oxidant and Hf(OTf)4 as a Lewis acid catalyst play important roles in the oxidative activation of the PMP group into a potential leaving group. This convenient glycosylation protocol proceeds under mild conditions and delivers a wide range of biologically and synthetically valuable glycoconjugates, including glycosyl fluorides.
Collapse
Affiliation(s)
- Hyun Su Kim
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Eunbin Jang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Hoe In Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Madala Hari Babu
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Jaehoon Sim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|