1
|
Biswas S, Empel C, Sanchez-Palestino LM, Arman H, Koenigs RM, Doyle MP. Denitrogenative dismantling of heteroaromatics by nucleophilic substitution reactions with diazomethyl compounds. Chem Sci 2024; 15:11065-11071. [PMID: 39027303 PMCID: PMC11253183 DOI: 10.1039/d4sc01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024] Open
Abstract
Nucleophiles from deprotonation of diazomethyl compounds having diverse electron withdrawing groups react with 4-carboxylato-1,2,3-triazines at the 6-position to extrude dinitrogen and produce diazovinylketoesters compounds with five or six linear contiguous sp2-hybridized carbons, whereas these same nucleophiles react with 4-carboxylato-1,2,3-triazine 1-oxides, also at the 6-position, to form pyrazolines with the expulsion of nitrous oxide and cyanocarboxylate. This disparity is due to the significant difference in reactivity of the nucleophilic addition products.
Collapse
Affiliation(s)
- Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Luis Mario Sanchez-Palestino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
- Escuela Superior de Medicina, Instituto Politécnico Nacional Mexico City 11340 Mexico
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
2
|
Biswas S, Hughes WB, De Angelis L, Haug GC, Trevino R, Fremin SO, Arman HD, Larionov OV, Doyle MP. The "cesium effect" magnified: exceptional chemoselectivity in cesium ion mediated nucleophilic reactions. Chem Sci 2024; 15:5277-5283. [PMID: 38577370 PMCID: PMC10988617 DOI: 10.1039/d4sc00316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Chemodivergent construction of structurally distinct heterocycles from the same precursors by adjusting specific reaction parameters is an emergent area of organic synthesis; yet, understanding of the processes that underpin the reaction divergence is lacking, preventing the development of new synthetic methods by systematically harnessing key mechanistic effects. We describe herein cesium carbonate-promoted oxadiaza excision cross-coupling reactions of β-ketoesters with 1,2,3-triazine 1-oxides that form pyridones in good to high yields, instead of the sole formation of pyridines when the same reaction is performed in the presence of other alkali metal carbonates or organic bases. The reaction can be further extended to the construction of synthetically challenging pyridylpyridones. A computational study comparing the effect of cesium and sodium ions in the oxadiaza excision cross-coupling reactions reveals that the cesium-coordinated species changes the reaction preference from attack at the ketone carbonyl to attack at the ester carbon due to metal ion-specific transition state conformational accommodation, revealing a previously unexplored role of cesium ions that may facilitate the development of chemodivergent approaches to other heterocyclic systems.
Collapse
Affiliation(s)
- Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - William B Hughes
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Graham C Haug
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Seth O Fremin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
3
|
De Angelis L, Haug GC, Rivera G, Biswas S, Al-Sayyed A, Arman H, Larionov O, Doyle MP. Site Reversal in Nucleophilic Addition to 1,2,3-Triazine 1-Oxides. J Am Chem Soc 2023; 145:13059-13068. [PMID: 37294869 PMCID: PMC10755600 DOI: 10.1021/jacs.3c01347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the most important reactions of 1,2,3-triazines with a dienophile is inverse electron demand Diels-Alder (IEDDA) cycloaddition, which occurs through nucleophilic addition to the triazine followed by N2 loss and cyclization to generate a heterocycle. The site of addition is either at the 4- or 6-position of the symmetrically substituted triazine core. Although specific examples of the addition of nucleophiles to triazines are known, a comprehensive understanding has not been reported, and the preferred site for nucleophilic addition is unknown and unexplored. With access to unsymmetrical 1,2,3-triazine-1-oxides and their deoxygenated 1,2,3-triazine compounds, we report C-, N-, H-, O-, and S-nucleophilic additions on 1,2,3-triazine and 1,2,3-triazine-1-oxide frameworks where the 4- and 6-positions could be differentiated. In the IEDDA cycloadditions using C- and N-nucleophiles, the site of addition is at C-6 for both heterocyclic systems, but product formation with 1,2,3-triazine-1-oxides is faster. Other N-nucleophile reactions with triazine 1-oxides show addition at either the 4- or 6-position of the triazine 1-oxide ring, but nucleophilic attack only occurs at the 6-position on the triazine. Hydride from NaBH4 undergoes addition at the 6-position on the triazine and the triazine 1-oxide core. Alkoxides show a high nucleophilic selectivity for the 4-position of the triazine 1-oxide. Thiophenoxide, cysteine, and glutathione undergo nucleophilic addition on the triazine core at the 6-position, while addition occurs at the 4-position of the triazine 1-oxide. These nucleophilic additions proceed under mild reaction conditions and show high functional group tolerance. Computational studies clarified the roles of the nucleophilic addition and nitrogen extrusion steps and the influence of steric and electronic factors in determining the outcomes of the reactions with different nucleophiles.
Collapse
Affiliation(s)
- Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Graham C Haug
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, Mexico
| | - Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ammar Al-Sayyed
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|