1
|
Wu SF, Wang ZY, Sun XW. Squaramide-catalyzed aza-Michael/Michael cyclization cascade reaction: one-pot enantioselective construction of highly functionalized γ-lactams. Org Biomol Chem 2025. [PMID: 40341321 DOI: 10.1039/d5ob00572h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
We report a squaramide-catalyzed aza-Michael/Michael cyclization of nitroalkenes with 3-benzoylacylamides, facilitating the asymmetric synthesis of γ-lactams. This method efficiently generates a range of optically pure γ-lactams, in yields ranging from 25% to 90% and enantioselectivities 71% to 99% under mild conditions. Moreover, this reaction demonstrates exceptional compatibility with a variety of functional groups and offers a wide array of subsequent transformation possibilities.
Collapse
Affiliation(s)
- Sheng-Feng Wu
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Zhi-Yuan Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Xing-Wen Sun
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Xu G, Zhu C, Li X, Zhu K, Xu H. Copper-catalyzed asymmetric [4+1] annulation of yne‑allylic esters with pyrazolones. CHINESE CHEM LETT 2025; 36:110114. [DOI: 10.1016/j.cclet.2024.110114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
|
3
|
Yuan WC, Fu XH, Zhang YP, You Y, Zhao JQ, Yang L, Zhou MQ, Wang ZH. Palladium-Catalyzed Decarboxylative Allylic Sulfonylation of Vinyloxazolidine-2,4-diones: Synthesis of γ-Sulfonyl-α,β-unsaturated Amides. J Org Chem 2025; 90:2670-2681. [PMID: 39929743 DOI: 10.1021/acs.joc.4c02743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A palladium-catalyzed decarboxylative allylic sulfonylation reaction of vinyloxazolidine-2,4-diones with inexpensive and readily available sodium sulfinates as sulfonylation reagents has been developed. Under the catalysis of Pd(PPh3)4, a wide range of γ-sulfonyl-α,β-unsaturated amides can be synthesized in good to excellent yields. The developed protocol is characterized by exclusive regioselectivity, mild reaction conditions, broad substrate scope, good functional group tolerance, and suitable for gram-scale synthesis.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- China National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Hui Fu
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- China National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- China National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Li L, Xu B, Jia C, Wang C, Ma D, Fang Z, Duan J, Guo K. Electrochemical Reductive Bimolecular Cycloaddition of 2-Arylideneindane-1,3-diones for the Synthesis of Spirocyclopentanole Indane-1,3-diones. J Org Chem 2025; 90:570-579. [PMID: 39720908 DOI: 10.1021/acs.joc.4c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
An electrochemical reductive bimolecular cycloaddition of 2-arylideneindane-1,3-diones has been reported for the synthesis of spirocyclopentanole indane-1,3-diones bearing five contiguous stereocenters with vicinal tetrasubstituted stereocenters, especially involving a quaternary carbon center, in moderate to good yields and excellent diastereoselectivities. The present protocol features mild reaction conditions, no external chemical redox reagents, excellent atom economy, and gram-scale synthesis. In addition, a mechanistic investigation indicates that the reactions proceed through a radical pathway.
Collapse
Affiliation(s)
- Luchao Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Binyan Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Chenglong Jia
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Caipeng Wang
- Shandong Yanggu Huatai Chemical Co., Ltd., Liaocheng 252300, China
| | - Delong Ma
- Shandong Yanggu Huatai Chemical Co., Ltd., Liaocheng 252300, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| |
Collapse
|
5
|
Dou PH, Fu XH, Chen Y, Ge ZZ, Zhou MQ, Wang ZH, You Y, Yang L, Zhang YP, Zhao JQ, Yuan WC. Palladium-Catalyzed Asymmetric Decarboxylation of 5-Vinyloxazolidine-2,4-Diones Triggering the Dearomatization of Electron-Deficient Indoles for the Synthesis of Chiral Highly Functionalized Pyrroloindolines. Org Lett 2024; 26:3310-3315. [PMID: 38587335 DOI: 10.1021/acs.orglett.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A catalyst system consisting of a chiral phosphoramidite ligand and Pd2(dba)3·CHCl3 causes the decarboxylation of 5-vinyloxazolidine-2,4-diones to generate amide-containing aza-π-allylpalladium 1,3-dipole intermediates, which are capable of triggering the dearomatization of 3-nitroindoles for diastereo- and enantioselective [3+2] cycloaddition, leading to the formation of a series of highly functionalized pyrroloindolines containing three contiguous stereogenic centers with excellent results (up to 99% yield, 88:12 dr, and 96% ee).
Collapse
Affiliation(s)
- Pei-Hao Dou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hui Fu
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen-Zhen Ge
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Qian HD, Li X, Yin T, Qian WF, Zhao C, Zhu C, Xu H. Remote copper-catalyzed enantioselective substitution of yne-thiophene carbonates. Sci China Chem 2024; 67:1175-1180. [DOI: 10.1007/s11426-023-1922-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/05/2024] [Indexed: 10/08/2024]
|
7
|
Wang S, Peng S, Zhao H, Liang Z, Lu X, Du Q, Wang Y, Wei B, Huang Q, Tan H. Regioselectivity Switch of α-Amino Acid-Derived Esters and MBH Carbonates for the Synthesis of Allyl-Substituted Azlactones. J Org Chem 2024; 89:3800-3808. [PMID: 38417106 DOI: 10.1021/acs.joc.3c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Allylic azlactones are greatly significant in terms of potential bioactivities and synthetic applications. Owing to the burgeoning interest of the pharmaceutical industry in α-amino acid derivatives, discovering strategies for the synthesis of allylic azlactones is important. Herein, we establish a transition-metal-free regioselectivity switch of α-amino acid-derived esters and MBH carbonates, which exhibits broad reaction scope and good reaction yields. Control reactions indicate that both base and solvent are important for regioselectivity.
Collapse
Affiliation(s)
- Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Shijie Peng
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Huishan Zhao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Zhuobao Liang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Xiuxiang Lu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qing Du
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Yifan Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Bingzhen Wei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Qin Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
8
|
Battula S, Kothuri P, Bhumannagari H, Nayani K. Decarboxylative [3 + 2] cycloaddition of propargyl cyclic carbonates with C, O-bis(nucleophile)s to access dihydrofuro[3,2- c]coumarins and dihydronaphtho[1,2- b]furans with quaternary center. Org Biomol Chem 2024; 22:1671-1675. [PMID: 38299749 DOI: 10.1039/d3ob01893h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The development of efficient and straightforward strategies for obtaining chiral complex molecules from readily available starting materials is of great value in drug discovery. The stereodivergent synthesis of heterocycles bearing quaternary centers remains a challenge due to inherent steric issues. Herein, we report an enantioselective copper-catalyzed decarboxylative [3 + 2] cycloaddition of propargyl cyclic carbonates/carbamates with 4-hydroxycoumarins to afford a wide range of dihydrofuro[3,2-c]coumarins in excellent yields and enantioselectivity. The strategy has been successfully applied to other C,O-bisnucleophiles, such as α-naphthols, to obtain dihydronaphtho[1,2-b]furans with good yields.
Collapse
Affiliation(s)
- Shravani Battula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pranay Kothuri
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Haripriya Bhumannagari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|